Early Drug Development : Bringing a Preclinical Candidate to the Clinic.
Material type:
- text
- computer
- online resource
- 9783527801763
- 615.19
- RM301.25 .E275 2018
Cover -- Title Page -- Copyright -- Contents -- Preface -- A Personal Foreword -- Chapter 1 Early Drug Development: Progressing a Candidate Compound to the Clinics -- References -- Part I Drug Substance -- Chapter 2 Early Phase API Process Development Overview -- 2.1 Introduction -- 2.2 API Process Development Overview -- 2.2.1 Early Process Development -- 2.2.2 Early Development Drivers and Constraints -- 2.3 The Transition from Discovery to Development -- 2.4 Process Development Organizational Construct -- 2.4.1 Core Functions -- 2.4.2 Specialized Technology Groups -- 2.4.3 Partner Functions -- 2.5 Process Development Equipment -- 2.5.1 Lab Equipment -- 2.5.2 Scale-up Equipment in the Laboratory -- 2.5.3 cGMP Manufacturing Equipment -- 2.6 Summary -- References -- Chapter 3 The Discovery/Development Transition -- 3.1 Introduction -- 3.2 Discovery-to-development Transition Before 1980 -- 3.2.1 Discovery/Development Handover -- 3.3 Discovery-to-development Transition in the 1980s -- 3.4 Discovery-to-development Transition in the 1990s -- 3.4.1 Development Time -- 3.4.2 The BMS IND Initiative -- 3.4.2.1 Parallel Activities -- 3.4.2.2 Integration -- 3.4.2.3 Optimization -- 3.4.2.4 Teamwork -- 3.4.2.5 Enthusiasm -- 3.5 Present Practice at BMS -- 3.5.1 The Role of Chemical Complexity -- 3.5.2 An Example of Early Prospective Chemical Development -- 3.6 Application in Small Biotechnology Companies Today -- 3.7 Application in CROs -- 3.7.1 Colocation of CMC Activities -- 3.8 Conclusions -- References -- Chapter 4 Active Pharmaceutical Ingredient Cost of Goods: Discovery to Early Development -- 4.1 Introduction -- 4.2 Stages of Research -- 4.3 Synthetic Route Translatability and Scalability: Strategy -- 4.4 Raw Material Considerations -- 4.5 Continual Assessment of Alternative Routes and Technologies, Including Preparative Chromatography.
4.6 Initial CoG Projections -- 4.7 CoG Versus Campaign Time Cycle -- 4.8 Synthetic Route Translatability and Scalability: Tactics -- 4.9 Preparing a CoG Estimate -- 4.10 Ancillary Expenses -- 4.10.1 Analytical Considerations -- 4.10.2 Polymorph Screening and Salt Screening -- 4.10.3 cGMP Surcharges -- 4.10.4 Critique of the Abilities of Process Groups and Drug Discovery Groups to Advance Development of APIs -- 4.11 Long-Term Considerations -- 4.12 Summary -- Acknowledgments -- References -- Chapter 5 New Technologies in Process Development -- 5.1 Introduction -- 5.2 Synthetic Biochemistry -- 5.2.1 Current State Biocatalysis -- 5.2.2 New Single-step Biotransformations -- 5.2.3 Cascade Biotransformations -- 5.2.4 The Future of Synthetic Biochemistry -- 5.3 Chemical Catalysis -- 5.3.1 Considerations for Application on Process Scale -- 5.3.2 Examples of Recent Catalysis Developments Applied in an Industrial Setting -- 5.3.3 The Future of Chemical Catalysis -- 5.4 Continuous Chemistry -- 5.4.1 Single-stage Continuous Processing -- 5.4.2 Fast Reactions with Unstable Intermediates -- 5.4.3 High Temperature and Pressure -- 5.4.4 Mixing of Biphasic Reactions -- 5.4.5 Safety -- 5.4.6 Photochemistry -- 5.4.7 Electrochemistry -- 5.4.8 Multistage Continuous Processing -- 5.4.9 The Future of Continuous Chemistry -- 5.5 Conclusion -- Acknowledgments -- References -- Chapter 6 Vortioxetine and Early Drug Development Considerations at the Interface of R& -- D -- 6.1 Introduction -- 6.2 Synthesis of Vortioxetine -- 6.2.1 Iron-mediated Synthetic Route -- 6.2.2 Mustard Route -- 6.2.3 Palladium-mediated Route -- 6.2.4 Radioligand Synthesis -- 6.3 Metabolites of Vortioxetine -- 6.4 Conclusion -- Abbreviations -- References -- Chapter 7 Development of a Practical Synthesis of 4'-Azido-2' -Methyl-2'-Desoxycytosine and Its Prodrugs as HCV Chemotherapeutic Agents.
7.1 Introduction -- 7.2 New Synthesis of (2'R)-2'-deoxy-2'-C-methyl uridine (10) -- 7.3 Dehydration and Iodoazidation Steps -- 7.4 Functionalization at C-4' -- 7.5 Synthesis of the API -- 7.6 Solid Form Selection -- 7.7 Process Safety -- 7.8 Impurity Strategy -- 7.9 Conclusion -- References -- Part II Drug Product -- Chapter 8 Solubility, Permeability, and Their Interplay -- 8.1 Introduction -- 8.2 Solubility -- 8.2.1 Solubility and Dissolution Rate -- 8.2.2 Log P -- 8.2.3 pH -- 8.2.4 Bile Salts -- 8.2.5 The Particle Size -- 8.2.6 Volume of Fluids -- 8.3 Permeability -- 8.3.1 Passive Diffusion -- 8.3.2 Unstirred Water Layer -- 8.3.3 Membrane Transporters -- 8.3.4 P-Glycoprotein (P-gp) -- 8.3.5 MRP2 -- 8.3.6 PEPT1 -- 8.3.7 OATP -- 8.4 The Solubility-Permeability Interplay -- 8.5 Summary -- List of Abbreviations -- References -- Chapter 9 Solid-State Properties -- 9.1 Introduction -- 9.2 Amorphous and Crystalline States: Basic Concepts -- 9.2.1 Crystalline States: Polymorphs, Hydrates, Solvates, Salts, and Cocrystals -- 9.2.2 Polymorph Screening and the Solid Form Selection Process -- 9.2.2.1 Goal of Form Selection -- 9.2.2.2 Characterization of the Starting Material -- 9.2.2.3 Polymorph Screening Methods -- 9.2.2.4 Assessing the Relative Stability of Multiple Physical Forms -- 9.2.2.5 Form Selection Process -- 9.2.3 Amorphous Solid Dispersions -- 9.2.3.1 Spray Drying -- 9.2.3.2 Hot Melt Extrusion -- 9.2.3.3 Solid Dispersion Workflow -- 9.2.3.4 Dissolution and Stability Issue -- 9.3 Physical Properties of Drug Substance -- 9.3.1 Particle Habit -- 9.3.2 Particle Size -- 9.4 Summary -- List of Abbreviations -- References -- Chapter 10 Salt and Cocrystal Screening -- 10.1 Introduction -- 10.2 Screening -- 10.2.1 Counterions and Coformers -- 10.2.2 Manual Versus Automated Screening -- 10.2.3 Computational Approaches.
10.2.4 Salt and Cocrystal Screening Strategies -- 10.2.5 Polymorph Screen of Salts/Cocrystals -- 10.3 Salt/Cocrystal Selection -- 10.4 Scale-Up -- 10.5 Formulation Considerations -- 10.6 Regulatory Aspects -- 10.7 Case Studies -- 10.7.1 Indinavir: Early Salt Form Change -- 10.7.2 Atorvastatin: Crystalline Form Change in Late Development -- 10.8 Summary -- List of Abbreviations -- References -- Chapter 11 Particle Size Reduction: From Microsizing to Nanosizing -- 11.1 Strategic Plans and Risk Management of Particle Size -- 11.2 Particle Size Reduction Techniques -- 11.2.1 Top-Down Approaches -- 11.2.2 Bottom-Up Approaches -- 11.3 Particle Size Analysis -- 11.3.1 Regulatory and Quality Considerations -- 11.3.2 Particle Size Techniques -- 11.3.3 Selection of Appropriate Technique or Set of Techniques -- 11.4 Bioavailability and the Desired Particle Size -- 11.4.1 Particle Size and Bioavailability -- 11.4.2 Initial Desired Particle Size -- 11.5 Enabling Formulation Approach by Particle Size Reduction in Early Drug Development -- 11.6 Benefits of Commercial Products Using Nanosized Crystalline Particles -- 11.7 Perspectives in Nanosizing Crystalline Particles -- 11.7.1 Nanoparticles and Targeting Delivery -- 11.7.2 Emerging Nanoparticle Techniques -- 11.8 Conclusions -- References -- Chapter 12 Early Drug Development: From a Drug Candidate to the Clinic -- 12.1 Preclinical Formulation Selection -- 12.1.1 Guiding Principles and Technology Selection for Preclinical Formulation -- 12.1.2 Predicting Preclinical Formulation Performance -- 12.2 Formulation Selection for FiH -- 12.2.1 Extemporaneous Preparation -- 12.2.2 Powder in Capsule (PIC) Formulation -- 12.2.2.1 Clinical Performance of PIC Dosage Forms: A Retrospective Data Analysis of Pfizer NCEs -- 12.2.2.2 Clinical Data Analysis Methodology.
12.2.2.3 Relationship Between Physicochemical Properties and Clinical Performance for PIC Dosage Forms: Results from Clinical Data Analysis -- 12.3 Conclusion -- Acknowledgments -- References -- Chapter 13 A Practical Guide for the Preparation of Drug Nanosuspensions for Preclinical Studies: Including In Vivo Case Studies -- 13.1 Introduction -- 13.2 Selecting the Appropriate Type of Formulation Based on Compound Properties and Type of Study -- 13.2.1 Solutions -- 13.2.1.1 pH Adjustment -- 13.2.1.2 Cosolvents -- 13.2.1.3 Solubilization in Cyclodextrins -- 13.2.1.4 Solubilization in Surfactants -- 13.3 Microsuspensions -- 13.4 Nanosuspensions -- 13.4.1 Amorphous or Crystalline Nanosuspension? -- 13.4.2 Selection of Stabilizers -- 13.4.3 Manufacturing Method Selection -- 13.4.3.1 Low API Concentrations (Up to Approximately 10 mM) -- 13.4.3.2 High API Concentrations (Above 10 mM) -- 13.5 Manufacturing Methods -- 13.5.1 Amorphous Nanoparticles at Low Compound Concentrations: The Precipitation Method -- 13.5.2 Amorphous Nanoparticles at High Compound Concentrations: The Melt Emulsion Method -- 13.5.3 Crystalline Drug Nanoparticles at Low Compound Concentrations: The Ultrasonic Crystallization Method -- 13.5.4 Crystalline Drug Nanoparticles at High Compound Concentrations: The Wet Milling Method -- 13.6 Additional Characterizations and Considerations Before In Vivo Dose Decisions and Administration Route Selection -- 13.6.1 Solubility Measurements -- 13.6.2 Measurements of Dissolution Rate -- 13.6.3 Colloidal Stability -- 13.6.4 Chemical Stability of the Compound -- 13.6.5 Sterilization Before Parenteral Administration -- 13.7 Case Studies -- 13.7.1 Case Study 1: Milled Nanocrystals of a Compound for Toxicological Studies.
13.7.2 Case Study 2: Amorphous Nanosuspensions Selected for Preclinical and Toxicological Studies Due to Improved Exposure Versus Crystalline Suspensions with Different Particle Sizes.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.