Advanced Surfaces for Stem Cell Research.
Material type:
- text
- computer
- online resource
- 9781119242826
- QH588.S83.A383 2017
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Extracellular Matrix Proteins for Stem Cell Fate -- 1.1 Human Stem Cells, Sources, and Niches -- 1.2 Role of Extrinsic and Intrinsic Factors -- 1.2.1 Shape -- 1.2.2 Topography Regulates Cell Fate -- 1.2.3 Stiffness and Stress -- 1.2.4 Integrins -- 1.2.5 Signaling via Integrins -- 1.3 Extracellular Matrix of the Mesenchyme: Human Bone Marrow -- 1.4 Biomimetic Peptides as Extracellular Matrix Proteins -- References -- 2 The Superficial Mechanical and Physical Properties of Matrix Microenvironment as Stem Cell Fate Regulator -- 2.1 Introduction -- 2.2 Fabrication of the Microenvironments with Different Properties in Surfaces -- 2.3 Effects of Surface Topography on Stem Cell Behaviors -- 2.4 Role of Substrate Stiffness and Elasticity of Matrix on Cell Culture -- 2.5 Stem Cell Fate Induced by Matrix Stiffness and Its Mechanism -- 2.6 Competition/Compliance between Matrix Stiffness and Other Signals and Their Effect on Stem Cells Fate -- 2.7 Effects of Matrix Stiffness on Stem Cells in Two Dimensions versus Three Dimensions -- 2.8 Effects of External Mechanical Cues on Stem Cell Fate from Surface Interactions Perspective -- 2.9 Conclusions -- Acknowledgments -- References -- 3 Effects of Mechanotransduction on Stem Cell Behavior -- 3.1 Introduction -- 3.2 The Concept of Mechanotransduction -- 3.3 The Mechanical Cues of Cell Differentiation and Tissue Formation on the Basis of Mechanotransduction -- 3.4 Mechanotransduction via External Forces -- 3.4.1 Mechanotransduction via Bioreactors -- 3.4.2 Mechanotransduction via Particle-based Systems -- 3.4.3 Mechanotransduction via Other External Forces -- 3.5 Mechanotransduction via Bioinspired Materials -- 3.6 Future Remarks and Conclusion -- Declaration of Interest -- References -- 4 Modulation of Stem Cells Behavior Through Bioactive Surfaces.
4.1 Lithography -- 4.2 Micro and Nanopatterning -- 4.3 Microfluidics -- 4.4 Electrospinning -- 4.5 Bottom-up/Top-down Approaches -- 4.6 Substrates Chemical Modifications -- 4.6.1 Biomolecules Coatings -- 4.6.2 Peptide Grafting -- 4.7 Conclusion -- Acknowledgements -- References -- 5 Influence of Controlled Micro- and Nanoengineered Environments on Stem Cell Fate -- 5.1 Introduction to Engineered Environments for the Control of Stem Cell Differentiation -- 5.1.1 Stem Cells Niche In Vivo: A Highly Dynamic and Complex Environment -- 5.1.2 Mimicking the Stem Cells Niche In Vitro: Engineered Biomaterials -- 5.2 Mechanoregulation of Stem Cell Fate -- 5.2.1 From In Vivo to In Vitro: Influence of the Mechanical Environment on Stem Cell Fate -- 5.2.2 Regulation of Stem Cell Fate by Surface Roughness -- 5.2.3 Control of Stem Cell Differentiation by Micro- and Nanotopographic Surfaces -- 5.2.4 Physical Gradients for Regulating Stem Cell Fate -- 5.3 Controlled Surface Immobilization of Biochemical Stimuli for Stem Cell Differentiation -- 5.3.1 Micro- and Nanopatterned Surfaces: Effect of Geometrical Constraint and Ligand Presentation at the Nanoscale -- 5.3.2 Biochemical Gradients for Stem Cell Differentiation -- 5.4 Three-dimensional Micro- and Nanoengineered Environments for Stem Cell Differentiation -- 5.4.1 Three-dimensional Mechanoregulation of Stem Cell Fate -- 5.4.2 Three-dimensional Biochemical Patterns for Stem Cell Differentiation -- 5.5 Conclusions and Future Perspectives -- References -- 6 Recent Advances in Nanostructured Polymeric Surface: Challenges and Frontiers in Stem Cells -- 6.1 Introduction -- 6.2 Nanostructured Surface -- 6.3 Stem Cell -- 6.4 Stem Cell/Surface Interaction -- 6.5 Microscopic Techniques Used in Estimating Stem Cell/Surface -- 6.5.1 Fluorescence Microscopy -- 6.5.2 Electron Microscopy -- 6.5.3 Atomic Force Microscopy.
6.5.3.1 Instrument -- 6.5.3.2 Cell Nanomechanical Motion -- 6.5.3.3 Mechanical Properties -- 6.6 Conclusions and Future Perspectives -- References -- 7 Laser Surface Modification Techniques and Stem Cells Applications -- 7.1 Introduction -- 7.2 Fundamental Laser Optics for Surface Structuring -- 7.2.1 Definitive Facts for Laser Surface Structuring -- 7.2.1.1 Absorptivity and Reflectivity of the Laser Beam by the Material Surface -- 7.2.1.2 Effect of the Incoming Laser Light Polarization -- 7.2.1.3 Operation Mode of the Laser -- 7.2.1.4 Beam Quality Factor -- 7.2.1.5 Laser Pulse Energy/Power -- 7.2.2 Ablation by Laser Pulses -- 7.2.2.1 Focusing the Laser Beam -- 7.2.2.2 Ablation Regime -- 7.3 Methods for Laser Surface Structuring -- 7.3.1 Physical Surface Modifications by Lasers -- 7.3.1.1 Direct Structuring -- 7.3.1.2 Beam Shaping Optics -- 7.3.1.3 Direct Laser Interference Patterning -- 7.3.2 Chemical Surface Modification by Lasers -- 7.3.2.1 Pulsed Laser Deposition -- 7.3.2.2 Laser Surface Alloying -- 7.3.2.3 Laser Surface Oxidation and Nitriding -- 7.4 Stem Cells and Laser-modified Surfaces -- 7.5 Conclusions -- References -- 8 Plasma Polymer Deposition: A Versatile Tool for Stem Cell Research -- 8.1 Introduction -- 8.2 The Principle and Physics of Plasma Methods for Surface Modification -- 8.2.1 Plasma Sputtering, Etching an Implantation -- 8.2.2 Plasma Polymer Deposition -- 8.3 Surface Properties Influencing Stem Cell Fate -- 8.3.1 Plasma Methods for Tailored Surface Chemistry -- 8.3.1.1 Oxygen-rich Surfaces -- 8.3.1.2 Nitrogen-rich Surfaces -- 8.3.1.3 Systematic Studies and Copolymers -- 8.3.2 Plasma for Surface Topography -- 8.3.3 Plasma for Surface Stiffness -- 8.3.4 Plasma for Gradient Substrata -- 8.3.5 Plasma and 3D Scaffolds -- 8.4 New Trends and Outlook -- 8.5 Conclusions -- References.
9 Three-dimensional Printing Approaches for the Treatment of Critical-sized Bone Defects -- 9.1 Background -- 9.1.1 Treatment Approaches for Critical-sized Bone Defects -- 9.1.2 History of the Application of 3D Printing to Medicine and Biology -- 9.2 Overview of 3D Printing Technologies -- 9.2.1 Laser-based Technologies -- 9.2.1.1 Stereolithography -- 9.2.1.2 Selective Laser Sintering -- 9.2.1.3 Selective Laser Melting -- 9.2.1.4 Electron Beam Melting -- 9.2.1.5 Two-photon Polymerization -- 9.2.2 Extrusion-based Technologies -- 9.2.2.1 Fused Deposition Modeling -- 9.2.2.2 Material Jetting -- 9.2.3 Ink-based Technologies -- 9.2.3.1 Inkjet 3D Printing -- 9.2.3.2 Aerosol Jet Printing -- 9.3 Surgical Guides and Models for Bone Reconstruction -- 9.3.1 Laser-based Surgical Guides -- 9.3.2 Extrusion-based Surgical Guides -- 9.3.3 Ink-based Surgical Guides -- 9.4 Three-dimensionally Printed Implants for Bone Substitution -- 9.4.1 Laser-based Technologies for Metallic Bone Implants -- 9.4.2 Extrusion-based Technologies for Bone Implants -- 9.4.3 Ink-based Technologies for Bone Implants -- 9.5 Scaffolds for Bone Regeneration -- 9.5.1 Laser-based Printing for Regenerative Scaffolds -- 9.5.2 Extrusion-based Printing for Regenerative Scaffolds -- 9.5.3 Ink-based Printing for Regenerative Scaffolds -- 9.5.4 Pre- and Post-processing Techniques -- 9.5.4.1 Pre-processing -- 9.5.4.2 Post-processing: Sintering -- 9.5.4.3 Post-processing: Functionalization -- 9.6 Bioprinting -- 9.7 Conclusion -- List of Abbreviation -- References -- 10 Application of Bioreactor Concept and Modeling Techniques to Bone Regeneration and Augmentation Treatments -- 10.1 Bone Tissue Regeneration -- 10.1.1 Proinflammatory Cytokines -- 10.1.2 Transforming Growth Factor Beta -- 10.1.3 Angiogenesis in Regeneration.
10.2 Actual Therapeutic Strategies and Concepts to Obtain an Optimal Bone Quality and Quantity -- 10.2.1 Guided Bone Regeneration Based on Cells -- 10.2.1.1 Embryonic Stem Cells -- 10.2.1.2 Adult Stem Cells -- 10.2.1.3 Mesenchymal Stem Cells -- 10.2.2 Guided Bone Regeneration Based on Platelet-Rich Plasma (PRP) and Growth Factors -- 10.2.2.1 Bone Morphogenetic Proteins -- 10.2.3 Guided Bone Regeneration Based on Barrier Membranes -- 10.2.4 Guided Bone Regeneration Based on Scaffolds -- 10.3 Bioreactors Employed for Tissue Engineering in Guided Bone Regeneration -- 10.3.1 Spinner Flask Bioreactors -- 10.3.2 Rotating Wall Bioreactors -- 10.3.3 Perfusion Bioreactors -- 10.4 Bioreactor Concept in Guided Bone Regeneration and Tissue Engineering: In Vivo Application -- 10.4.1 Sand Blasting -- 10.4.2 Chemical Treatment -- 10.4.3 Heat Treatment -- 10.5 New Multidisciplinary Approaches Intended to Improve and Accelerate the Treatment of Injured and/or Diseased Bone -- 10.5.1 Application of Bioreactor in Dentistry: Therapies for the Treatment of Maxillary Bone Defects -- 10.5.2 Application of Bioreactor in Cases of Osteoporosis -- 10.6 Computational Modeling: An Effective Tool to Predict Bone Ingrowth -- References -- 11 Stem Cell-based Medicinal Products: Regulatory Perspectives -- 11.1 Introduction -- 11.2 Defining Stem Cell-based Medicinal Products -- 11.3 Regional Regulatory Issues for Stem Cell Products -- 11.4 Regulatory Systems for Stem Cell-based Technologies -- 11.4.1 The US Regulatory System -- 11.5 Stem Cell Technologies: The European Regulatory System -- References -- 12 Substrates and Surfaces for Control of Pluripotent Stem Cell Fate and Function -- 12.1 Introduction -- 12.2 Pluripotent Stem Cells -- 12.3 Substrates for Maintenance of Self-renewal and Pluripotency of PSCs -- 12.3.1 Cellular Substrates -- 12.3.2 Acellular Substrates.
12.3.2.1 Biological Matrices.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.