ORPP logo
Image from Google Jackets

Limit Theorems of Polynomial Approximation with Exponential Weights.

By: Material type: TextTextSeries: Memoirs of the American Mathematical SocietyPublisher: Providence : American Mathematical Society, 2008Copyright date: ©2008Edition: 1st edDescription: 1 online resource (178 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470405038
Subject(s): Genre/Form: Additional physical formats: Print version:: Limit Theorems of Polynomial Approximation with Exponential WeightsDDC classification:
  • 510 s;515/.98
LOC classification:
  • QA353.E5 -- G367 2008eb
Online resources:
Contents:
Intro -- Contents -- Chapter 1. Introduction -- 1.1. A Brief Review -- 1.2. Results and Organization of the Monograph -- 1.3. Basic Notation and Some Preliminaries -- 1.4. Classes of Weights and Basic Estimates -- 1.5. Acknowledgements -- Chapter 2. Statement of Main Results -- 2.1. Limit Theorems of Polynomial Approximation with Exponential Weights -- 2.2. Approximation of Entire Functions of Exponential Type -- 2.3. Polynomial Inequalities in the Complex Plane -- Chapter 3. Properties of Harmonic Functions -- 3.1. The Poisson Integral Re H(w) -- 3.2. The Function h(r) and the Constant b[sub(n)] -- 3.3. The Functions φ(r) and φ[sub(1)](r) -- 3.4. The Main Estimate for Re H(w) -- Chapter 4. Polynomial Inequalities with Exponential Weights -- 4.1. Nikolskii-type Inequalities -- 4.2. Extremal Polynomials -- 4.3. Polynomial Inequalities in the Complex Plane -- 4.4. Proofs of Theorems 2.3.1 and 2.3.2 -- Chapter 5. Entire Functions of Exponential Type and their Approximation Properties -- 5.1. Entire Functions of Exponential Type -- 5.2. Approximation Properties of Entire Functions of Exponential Type -- Chapter 6. Polynomial Interpolation and Approximation of Entire Functions of Exponential Type -- 6.1. Interpolation on the Interval I[sub(n)] = […a[sub(n)](1+δ[sub(n)]), a[sub(n)](1+δ[sub(n)])] -- 6.2. Interpolation on I\I[sub(n)] -- 6.3. Proof of Theorem 2.2.1 -- 6.4. Proof of Theorem 2.2.2 -- Chapter 7. Proofs of the Limit Theorems -- 7.1. Proof of Theorem 2.1.1 -- 7.2. Proof of Theorem 2.1.2 -- 7.3. Proofs of Theorems 2.1.3 and 2.1.4 -- Chapter 8. Applications -- 8.1. Approximation of Individual Functions and Proof of Theorem 2.3.3 -- 8.2. An Asymptotically Sharp Constant of Weighted Approximation on the Class W[sup(r)]H[sup(λ)][I] -- 8.3. Convergence of Polynomials and a Mehler-Heine Formula for Orthonormal Polynomials.
Chapter 9. Multidimensional Limit Theorems of Polynomial Approximation with Exponential Weights -- 9.1. Multidimensional Limit Theorems with Exponential Weights -- 9.2. Proof of Theorem 9.1.3 -- 9.3. Proofs of Theorems 9.1.1 and 9.1.4 -- 9.4. Approximation of λ-Homogeneous Functions -- Chapter 10. Examples -- 10.1. W(x) = exp(…|x|α), α &gt -- 1 -- 10.2. W(x) = exp(-|x|) -- 10.3. W(x) = exp(…|x|α), 0&lt -- α &lt -- 1 -- 10.4. W(x) = exp(…|x|α), α → ∞ -- 10.5. Examples of Erdös Weights -- Appendix A. Appendix. Negativity of a Kernel -- A. l. Statement of the Main Result -- A. 2. Some Technical Results -- A. 3. Proof of Proposition A.1.1 -- Bibliography -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Chapter 1. Introduction -- 1.1. A Brief Review -- 1.2. Results and Organization of the Monograph -- 1.3. Basic Notation and Some Preliminaries -- 1.4. Classes of Weights and Basic Estimates -- 1.5. Acknowledgements -- Chapter 2. Statement of Main Results -- 2.1. Limit Theorems of Polynomial Approximation with Exponential Weights -- 2.2. Approximation of Entire Functions of Exponential Type -- 2.3. Polynomial Inequalities in the Complex Plane -- Chapter 3. Properties of Harmonic Functions -- 3.1. The Poisson Integral Re H(w) -- 3.2. The Function h(r) and the Constant b[sub(n)] -- 3.3. The Functions φ(r) and φ[sub(1)](r) -- 3.4. The Main Estimate for Re H(w) -- Chapter 4. Polynomial Inequalities with Exponential Weights -- 4.1. Nikolskii-type Inequalities -- 4.2. Extremal Polynomials -- 4.3. Polynomial Inequalities in the Complex Plane -- 4.4. Proofs of Theorems 2.3.1 and 2.3.2 -- Chapter 5. Entire Functions of Exponential Type and their Approximation Properties -- 5.1. Entire Functions of Exponential Type -- 5.2. Approximation Properties of Entire Functions of Exponential Type -- Chapter 6. Polynomial Interpolation and Approximation of Entire Functions of Exponential Type -- 6.1. Interpolation on the Interval I[sub(n)] = […a[sub(n)](1+δ[sub(n)]), a[sub(n)](1+δ[sub(n)])] -- 6.2. Interpolation on I\I[sub(n)] -- 6.3. Proof of Theorem 2.2.1 -- 6.4. Proof of Theorem 2.2.2 -- Chapter 7. Proofs of the Limit Theorems -- 7.1. Proof of Theorem 2.1.1 -- 7.2. Proof of Theorem 2.1.2 -- 7.3. Proofs of Theorems 2.1.3 and 2.1.4 -- Chapter 8. Applications -- 8.1. Approximation of Individual Functions and Proof of Theorem 2.3.3 -- 8.2. An Asymptotically Sharp Constant of Weighted Approximation on the Class W[sup(r)]H[sup(λ)][I] -- 8.3. Convergence of Polynomials and a Mehler-Heine Formula for Orthonormal Polynomials.

Chapter 9. Multidimensional Limit Theorems of Polynomial Approximation with Exponential Weights -- 9.1. Multidimensional Limit Theorems with Exponential Weights -- 9.2. Proof of Theorem 9.1.3 -- 9.3. Proofs of Theorems 9.1.1 and 9.1.4 -- 9.4. Approximation of λ-Homogeneous Functions -- Chapter 10. Examples -- 10.1. W(x) = exp(…|x|α), α &gt -- 1 -- 10.2. W(x) = exp(-|x|) -- 10.3. W(x) = exp(…|x|α), 0&lt -- α &lt -- 1 -- 10.4. W(x) = exp(…|x|α), α → ∞ -- 10.5. Examples of Erdös Weights -- Appendix A. Appendix. Negativity of a Kernel -- A. l. Statement of the Main Result -- A. 2. Some Technical Results -- A. 3. Proof of Proposition A.1.1 -- Bibliography -- Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.