ORPP logo
Image from Google Jackets

Understanding Smart Sensors.

By: Material type: TextTextPublisher: Norwood : Artech House, 2013Copyright date: ©2013Edition: 3rd edDescription: 1 online resource (388 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781608075089
Subject(s): Genre/Form: Additional physical formats: Print version:: Understanding Smart SensorsDDC classification:
  • 681/.2
LOC classification:
  • TA165 -- .F724 2013eb
Online resources:
Contents:
Intro -- Understanding Smart Sensors Third Edition -- Contents -- Preface -- Chapter 1 Smart Sensor Basics -- 1.1 Introduction -- 1.2 Mechanical-Electronic Transitions in Sensing -- 1.3 Nature of Sensors -- 1.4 Integration of Micromachining and Microelectronics -- 1.5 Application Example -- 1.6 Summary -- References -- Selected Bibliography -- Chapter 2 Micromachining -- 2.1 Introduction -- 2.2 Bulk Micromachining -- 2.3 Wafer Bonding -- 2.3.1 Silicon-on-Silicon Bonding -- 2.3.2 Silicon-on-Glass (Anodic) Bonding -- 2.3.3 Silicon Fusion Bonding -- 2.3.4 Wafer Bonding for More Complex Structures and Adding ICs -- 2.4 Surface Micromachining -- 2.4.1 Squeeze-Film Damping -- 2.4.2 Stiction -- 2.4.3 Particulate Control -- 2.4.4 Combinations of Surface and Bulk Micromachining -- 2.5 Other Micromachining Techniques -- 2.5.1 The LIGA Process -- 2.5.2 Dry Etching Processes -- 2.5.3 Micromilling -- 2.5.4 Lasers in Micromachining -- 2.6 Combining MEMS with IC Fabrication -- 2.7 Other Micromachined Materials -- 2.7.1 Diamond as an Alternate Sensor Material -- 2.7.2 Metal Oxides and Piezoelectric Sensing -- 2.7.3 Films on Microstructures -- 2.7.4 Micromachining Metal Structures -- 2.7.5 Carbon Nanotube MEMS -- 2.8 MEMS Foundry Services and Software Tools -- 2.9 Application Example -- 2.10 Summary -- References -- Selected Bibliography -- Chapter 3 The Nature of Semiconductor Sensor Output -- 3.1 Introduction -- 3.2 Sensor Output Characteristics -- 3.2.1 Wheatstone Bridge -- 3.2.2 Piezoresistivity in Silicon -- 3.2.3 Semiconductor Sensor Definitions -- 3.2.4 Static Versus Dynamic Operation -- 3.3 Other Sensing Technologies -- 3.3.1 Capacitive Sensing -- 3.3.2 Piezoelectric Sensing -- 3.3.3 The Hall-Effect -- 3.3.4 Chemical Sensors -- 3.3.5 Improving Sensor Characteristics -- 3.4 Digital Output Sensors -- 3.4.1 Incremental Optical Encoders.
3.4.2 Digital Techniques -- 3.5 Noise/Interference Aspects -- 3.6 Low Power, Low Voltage Sensors -- 3.6.1 Impedance -- 3.7 Analysis of Sensitivity Improvement -- 3.7.1 Thin Diaphragm -- 3.7.2 Increase Diaphragm Area -- 3.7.3 Improve Topology -- 3.8 Application Example -- 3.9 Summary -- References -- Chapter 4 Getting Sensor Information Into the Microcontroller -- 4.1 Introduction -- 4.2 Amplification and Signal Conditioning -- 4.2.1 Instrumentation Amplifiers -- 4.2.2 Sleep-Mode Circuitry for Reducing Power -- 4.2.3 Rail to Rail Operational Amplifiers -- 4.2.4 Switched-Capacitor Amplifier -- 4.2.5 Barometer Application Circuit -- 4.2.6 4- to 20-mA Signal Transmitter -- 4.2.7 Schmitt Trigger -- 4.3 Separate Versus Integrated Signal Conditioning -- 4.3.1 Integrated Signal Conditioning -- 4.3.2 External Signal Conditioning -- 4.4 Digital Conversion -- 4.4.1 A/D Converters -- 4.4.2 Performance of A/D Converters -- 4.4.3 Implications of A/D Accuracy and Errors -- 4.5 On-Line Tool for Evaluating a Sensor Interface Design -- 4.6 Application Example -- 4.7 Summary -- References -- Selected Bibliography -- Chapter 5 Using MCUs/DSPs to Increase Sensor IQ -- 5.1 Introduction -- 5.1.1 Other IC Technologies -- 5.1.2 Logic Requirements -- 5.2 MCU Control -- 5.3 MCUs for Sensor Interface -- 5.3.1 Peripherals -- 5.3.2 Memory -- 5.3.3 Input/Output -- 5.3.4 On-Board A/D Conversion -- 5.3.5 Power Saving Capability -- 5.3.6 Local Voltage or Current Regulation -- 5.4 DSP Control -- 5.4.1 Digital Signal Controllers -- 5.4.2 Field Programmable Gate Arrays -- 5.4.3 Algorithms Versus Look-Up Tables -- 5.5 Techniques and Systems Considerations -- 5.5.1 Linearization -- 5.5.2 PWM Control -- 5.5.3 Autozero and Autorange -- 5.5.4 Diagnostics -- 5.5.5 Reducing EMC/RFI -- 5.5.6 Indirect (Computed not Sensed) Versus Direct Sensing -- 5.6 Software, Tools, and Support.
5.6.1 Design-in Support -- 5.7 Sensor Integration -- 5.8 Application Example -- 5.9 Summary -- References -- Chapter 6 Communications for Smart Sensors -- 6.1 Introduction -- 6.2 Background and Definitions -- 6.2.1 Definitions -- 6.2.2 Background -- 6.3 Sources (Organizations) and Standards -- 6.4 Automotive Protocols -- 6.4.1 CAN Protocol -- 6.4.2 LIN Protocol -- 6.4.3 Media Oriented Systems Transport -- 6.4.4 FlexRay -- 6.4.5 Other Automotive Protocol Aspects -- 6.5 Industrial Networks -- 6.5.1 Example Industrial Protocols -- 6.6 Protocols in Other Applications -- 6.7 Protocols in Silicon -- 6.7.1 MCU with Integrated CAN -- 6.7.2 LIN Implementation -- 6.7.3 Ethernet Controller -- 6.8 Transitioning Between Protocols -- 6.9 Application Example -- 6.10 Summary -- References -- Additional References -- Chapter 7 Control Techniques -- 7.1 Introduction -- 7.1.1 Programmable Logic Controllers -- 7.1.2 Open- Versus Closed-Loop Systems -- 7.1.3 PID Control -- 7.2 State Machines -- 7.3 Fuzzy Logic -- 7.4 Neural Networks -- 7.5 Combined Fuzzy Logic and Neural Networks -- 7.6 Adaptive Control -- 7.6.1 Observers for Sensing -- 7.7 Other Control Areas -- 7.7.1 RISC Versus CISC -- 7.8 Impact of Artificial Intelligence -- 7.9 Application Example -- 7.10 Summary -- References -- Chapter 8 Wireless Sensing -- 8.1 Introduction -- 8.1.1 The RF Spectrum -- 8.1.2 Spread Spectrum -- 8.2 Wireless Data and Communications -- 8.3 Wireless Sensing Networks -- 8.3.1 ZigBee -- 8.3.2 ZigBee-Like Wireless -- 8.3.3 ANT+ -- 8.3.4 6LoWPAN -- 8.3.5 Near Field Communication (NFC) -- 8.3.6 Z-Wave -- 8.3.7 Dust Networks -- 8.3.8 Other RF Wireless Solutions -- 8.3.9 Optical Signal Transmission -- 8.4 Industrial Wireless Sensing Networks -- 8.5 RF Sensing -- 8.5.1 Surface Acoustic Wave Devices -- 8.5.2 Radar -- 8.5.3 Light Detection and Ranging (LIDAR).
8.5.4 Global Positioning System -- 8.5.5 Remote Emissions Sensing -- 8.5.6 Remote Keyless Entry -- 8.5.7 Intelligent Transportation System -- 8.5.8 RF-ID -- 8.5.9 Other Remote Sensing -- 8.6 Telemetry -- 8.7 RF MEMS -- 8.8 Application Example -- 8.9 Summary -- References -- Selected Bibliography -- Chapter 9 MEMS Beyond Sensors -- 9.1 Introduction -- 9.2 MEMS Actuators -- 9.2.1 Microvalves -- 9.2.2 Micromotors -- 9.2.3 Micropumps -- 9.2.4 Microdynamometer -- 9.2.5 Microsteam Engine -- 9.2.6 Actuators in Other Semiconductor Materials -- 9.3 Other Micromachined Structures -- 9.3.1 Cooling Channels -- 9.3.2 Microoptics -- 9.3.3 Microgripper -- 9.3.4 Microprobes -- 9.3.5 Micromirrors -- 9.3.6 Heating Elements -- 9.3.7 Thermionic Emitters -- 9.3.8 Field Emission Devices -- 9.3.9 Unfoldable Microelements -- 9.3.10 Micronozzles -- 9.3.11 Interconnects for Stacked Wafers -- 9.3.12 Nanoguitar -- 9.4 Application Example -- 9.5 Summary -- References -- Chapter 10 Packaging, Testing, and Reliability Implications of Smarter Sensors -- 10.1 Introduction -- 10.2 Semiconductor Packaging Applied to Sensors -- 10.2.1 Increased Pin Count -- 10.3 Hybrid Packaging -- 10.3.1 Ceramic Packaging and Ceramic Substrates -- 10.3.2 Multichip Modules -- 10.3.3 Dual-Chip Packaging -- 10.3.4 BGA Packaging -- 10.4 Common Packaging for Sensors -- 10.4.1 Plastic Packaging -- 10.4.2 Surface-Mount Packaging -- 10.4.3 Flip-Chip -- 10.4.4 Wafer-Level Packaging -- 10.4.5 3-D Packaging -- 10.5 Reliability Implications -- 10.5.1 The Physics of Failure -- 10.5.2 Wafer-Level Sensor Reliability -- 10.6 Testing Smarter Sensors -- 10.7 Application Example -- 10.8 Summary -- References -- Chapter 11 Mechatronics and Sensing Systems -- 11.1 Introduction -- 11.1.1 Integration and Mechatronics -- 11.2 Smart-Power ICs -- 11.3 Embedded Sensing -- 11.3.1 Temperature Sensing.
11.3.2 Current Sensing in Power ICs -- 11.3.3 Diagnostics -- 11.3.4 MEMS Relays -- 11.4 Other System Aspects -- 11.4.1 Batteries -- 11.4.2 Field Emission Displays -- 11.4.3 System Voltage Transients, Electrostatic Discharge, and Electromagnetic Interference -- 11.5 Application Example -- 11.6 Summary -- References -- Chapter 12 Standards for Smart Sensing -- 12.1 Introduction -- 12.2 Setting the Standards for Smart Sensors and Systems -- 12.3 IEEE 1451.1 -- 12.3.1 Network-Capable Application Processor -- 12.3.2 Network Communication Models -- 12.4 IEEE 1451.2 -- 12.4.1 STIM -- 12.4 2 Transducer Electronic Data Sheet -- 12.4.3 TII -- 12.4.4 Calibration/Correction Engine -- 12.4.5 Sourcing Power to STIMs -- 12.4.6 Representing Physical Units in the TEDS -- 12.5 IEEE 1451.3 -- 12.6 IEEE 1451.4 -- 12.7 IEEE1451.5 -- 12.8 IEEE P1451.6 -- 12.9 IEEE 1451.7 -- 12.10 Extending the System to the Network -- 12.11 Application Example -- 12.12 Summary -- References -- Selected Bibliography -- Chapter 13 More Standards Impacting Sensors -- 13.1 Introduction -- 13.2 Sensor Plug and Play -- 13.3 Universal Serial Bus -- 13.4 Development Tools Establish De Facto Standards -- 13.5 Alternate Standards -- 13.5.1 Airplane Networks -- 13.5.2 Automotive Safety Network -- 13.5.3 Another Automotive Safety Network -- 13.5.4 Automotive Sensor Protocol -- 13.6 Consumer/Cell Phone Apps -- 13.7 Application Example -- 13.8 Summary -- References -- Chapter 14 Sensor Fusion -- 14.1 Introduction -- 14.2 Sensor and Other Fusion Background -- 14.3 Automotive Applications -- 14.3.1 Ranging and Vision -- 14.3.2 Sensor Fusion for Virtual Sensors -- 14.3.3 Autonomous Driving -- 14.4 Industrial (Robotic) Applications -- 14.5 Consumer Applications -- 14.5.1 Fusion Software in the Sensor -- 14.5.2 Separate Fusion Software -- 14.5.3 Flexible Fusion Software -- 14.5.4 Agnostic Sensor Fusion.
14.5.5 Simulation and Testing.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Understanding Smart Sensors Third Edition -- Contents -- Preface -- Chapter 1 Smart Sensor Basics -- 1.1 Introduction -- 1.2 Mechanical-Electronic Transitions in Sensing -- 1.3 Nature of Sensors -- 1.4 Integration of Micromachining and Microelectronics -- 1.5 Application Example -- 1.6 Summary -- References -- Selected Bibliography -- Chapter 2 Micromachining -- 2.1 Introduction -- 2.2 Bulk Micromachining -- 2.3 Wafer Bonding -- 2.3.1 Silicon-on-Silicon Bonding -- 2.3.2 Silicon-on-Glass (Anodic) Bonding -- 2.3.3 Silicon Fusion Bonding -- 2.3.4 Wafer Bonding for More Complex Structures and Adding ICs -- 2.4 Surface Micromachining -- 2.4.1 Squeeze-Film Damping -- 2.4.2 Stiction -- 2.4.3 Particulate Control -- 2.4.4 Combinations of Surface and Bulk Micromachining -- 2.5 Other Micromachining Techniques -- 2.5.1 The LIGA Process -- 2.5.2 Dry Etching Processes -- 2.5.3 Micromilling -- 2.5.4 Lasers in Micromachining -- 2.6 Combining MEMS with IC Fabrication -- 2.7 Other Micromachined Materials -- 2.7.1 Diamond as an Alternate Sensor Material -- 2.7.2 Metal Oxides and Piezoelectric Sensing -- 2.7.3 Films on Microstructures -- 2.7.4 Micromachining Metal Structures -- 2.7.5 Carbon Nanotube MEMS -- 2.8 MEMS Foundry Services and Software Tools -- 2.9 Application Example -- 2.10 Summary -- References -- Selected Bibliography -- Chapter 3 The Nature of Semiconductor Sensor Output -- 3.1 Introduction -- 3.2 Sensor Output Characteristics -- 3.2.1 Wheatstone Bridge -- 3.2.2 Piezoresistivity in Silicon -- 3.2.3 Semiconductor Sensor Definitions -- 3.2.4 Static Versus Dynamic Operation -- 3.3 Other Sensing Technologies -- 3.3.1 Capacitive Sensing -- 3.3.2 Piezoelectric Sensing -- 3.3.3 The Hall-Effect -- 3.3.4 Chemical Sensors -- 3.3.5 Improving Sensor Characteristics -- 3.4 Digital Output Sensors -- 3.4.1 Incremental Optical Encoders.

3.4.2 Digital Techniques -- 3.5 Noise/Interference Aspects -- 3.6 Low Power, Low Voltage Sensors -- 3.6.1 Impedance -- 3.7 Analysis of Sensitivity Improvement -- 3.7.1 Thin Diaphragm -- 3.7.2 Increase Diaphragm Area -- 3.7.3 Improve Topology -- 3.8 Application Example -- 3.9 Summary -- References -- Chapter 4 Getting Sensor Information Into the Microcontroller -- 4.1 Introduction -- 4.2 Amplification and Signal Conditioning -- 4.2.1 Instrumentation Amplifiers -- 4.2.2 Sleep-Mode Circuitry for Reducing Power -- 4.2.3 Rail to Rail Operational Amplifiers -- 4.2.4 Switched-Capacitor Amplifier -- 4.2.5 Barometer Application Circuit -- 4.2.6 4- to 20-mA Signal Transmitter -- 4.2.7 Schmitt Trigger -- 4.3 Separate Versus Integrated Signal Conditioning -- 4.3.1 Integrated Signal Conditioning -- 4.3.2 External Signal Conditioning -- 4.4 Digital Conversion -- 4.4.1 A/D Converters -- 4.4.2 Performance of A/D Converters -- 4.4.3 Implications of A/D Accuracy and Errors -- 4.5 On-Line Tool for Evaluating a Sensor Interface Design -- 4.6 Application Example -- 4.7 Summary -- References -- Selected Bibliography -- Chapter 5 Using MCUs/DSPs to Increase Sensor IQ -- 5.1 Introduction -- 5.1.1 Other IC Technologies -- 5.1.2 Logic Requirements -- 5.2 MCU Control -- 5.3 MCUs for Sensor Interface -- 5.3.1 Peripherals -- 5.3.2 Memory -- 5.3.3 Input/Output -- 5.3.4 On-Board A/D Conversion -- 5.3.5 Power Saving Capability -- 5.3.6 Local Voltage or Current Regulation -- 5.4 DSP Control -- 5.4.1 Digital Signal Controllers -- 5.4.2 Field Programmable Gate Arrays -- 5.4.3 Algorithms Versus Look-Up Tables -- 5.5 Techniques and Systems Considerations -- 5.5.1 Linearization -- 5.5.2 PWM Control -- 5.5.3 Autozero and Autorange -- 5.5.4 Diagnostics -- 5.5.5 Reducing EMC/RFI -- 5.5.6 Indirect (Computed not Sensed) Versus Direct Sensing -- 5.6 Software, Tools, and Support.

5.6.1 Design-in Support -- 5.7 Sensor Integration -- 5.8 Application Example -- 5.9 Summary -- References -- Chapter 6 Communications for Smart Sensors -- 6.1 Introduction -- 6.2 Background and Definitions -- 6.2.1 Definitions -- 6.2.2 Background -- 6.3 Sources (Organizations) and Standards -- 6.4 Automotive Protocols -- 6.4.1 CAN Protocol -- 6.4.2 LIN Protocol -- 6.4.3 Media Oriented Systems Transport -- 6.4.4 FlexRay -- 6.4.5 Other Automotive Protocol Aspects -- 6.5 Industrial Networks -- 6.5.1 Example Industrial Protocols -- 6.6 Protocols in Other Applications -- 6.7 Protocols in Silicon -- 6.7.1 MCU with Integrated CAN -- 6.7.2 LIN Implementation -- 6.7.3 Ethernet Controller -- 6.8 Transitioning Between Protocols -- 6.9 Application Example -- 6.10 Summary -- References -- Additional References -- Chapter 7 Control Techniques -- 7.1 Introduction -- 7.1.1 Programmable Logic Controllers -- 7.1.2 Open- Versus Closed-Loop Systems -- 7.1.3 PID Control -- 7.2 State Machines -- 7.3 Fuzzy Logic -- 7.4 Neural Networks -- 7.5 Combined Fuzzy Logic and Neural Networks -- 7.6 Adaptive Control -- 7.6.1 Observers for Sensing -- 7.7 Other Control Areas -- 7.7.1 RISC Versus CISC -- 7.8 Impact of Artificial Intelligence -- 7.9 Application Example -- 7.10 Summary -- References -- Chapter 8 Wireless Sensing -- 8.1 Introduction -- 8.1.1 The RF Spectrum -- 8.1.2 Spread Spectrum -- 8.2 Wireless Data and Communications -- 8.3 Wireless Sensing Networks -- 8.3.1 ZigBee -- 8.3.2 ZigBee-Like Wireless -- 8.3.3 ANT+ -- 8.3.4 6LoWPAN -- 8.3.5 Near Field Communication (NFC) -- 8.3.6 Z-Wave -- 8.3.7 Dust Networks -- 8.3.8 Other RF Wireless Solutions -- 8.3.9 Optical Signal Transmission -- 8.4 Industrial Wireless Sensing Networks -- 8.5 RF Sensing -- 8.5.1 Surface Acoustic Wave Devices -- 8.5.2 Radar -- 8.5.3 Light Detection and Ranging (LIDAR).

8.5.4 Global Positioning System -- 8.5.5 Remote Emissions Sensing -- 8.5.6 Remote Keyless Entry -- 8.5.7 Intelligent Transportation System -- 8.5.8 RF-ID -- 8.5.9 Other Remote Sensing -- 8.6 Telemetry -- 8.7 RF MEMS -- 8.8 Application Example -- 8.9 Summary -- References -- Selected Bibliography -- Chapter 9 MEMS Beyond Sensors -- 9.1 Introduction -- 9.2 MEMS Actuators -- 9.2.1 Microvalves -- 9.2.2 Micromotors -- 9.2.3 Micropumps -- 9.2.4 Microdynamometer -- 9.2.5 Microsteam Engine -- 9.2.6 Actuators in Other Semiconductor Materials -- 9.3 Other Micromachined Structures -- 9.3.1 Cooling Channels -- 9.3.2 Microoptics -- 9.3.3 Microgripper -- 9.3.4 Microprobes -- 9.3.5 Micromirrors -- 9.3.6 Heating Elements -- 9.3.7 Thermionic Emitters -- 9.3.8 Field Emission Devices -- 9.3.9 Unfoldable Microelements -- 9.3.10 Micronozzles -- 9.3.11 Interconnects for Stacked Wafers -- 9.3.12 Nanoguitar -- 9.4 Application Example -- 9.5 Summary -- References -- Chapter 10 Packaging, Testing, and Reliability Implications of Smarter Sensors -- 10.1 Introduction -- 10.2 Semiconductor Packaging Applied to Sensors -- 10.2.1 Increased Pin Count -- 10.3 Hybrid Packaging -- 10.3.1 Ceramic Packaging and Ceramic Substrates -- 10.3.2 Multichip Modules -- 10.3.3 Dual-Chip Packaging -- 10.3.4 BGA Packaging -- 10.4 Common Packaging for Sensors -- 10.4.1 Plastic Packaging -- 10.4.2 Surface-Mount Packaging -- 10.4.3 Flip-Chip -- 10.4.4 Wafer-Level Packaging -- 10.4.5 3-D Packaging -- 10.5 Reliability Implications -- 10.5.1 The Physics of Failure -- 10.5.2 Wafer-Level Sensor Reliability -- 10.6 Testing Smarter Sensors -- 10.7 Application Example -- 10.8 Summary -- References -- Chapter 11 Mechatronics and Sensing Systems -- 11.1 Introduction -- 11.1.1 Integration and Mechatronics -- 11.2 Smart-Power ICs -- 11.3 Embedded Sensing -- 11.3.1 Temperature Sensing.

11.3.2 Current Sensing in Power ICs -- 11.3.3 Diagnostics -- 11.3.4 MEMS Relays -- 11.4 Other System Aspects -- 11.4.1 Batteries -- 11.4.2 Field Emission Displays -- 11.4.3 System Voltage Transients, Electrostatic Discharge, and Electromagnetic Interference -- 11.5 Application Example -- 11.6 Summary -- References -- Chapter 12 Standards for Smart Sensing -- 12.1 Introduction -- 12.2 Setting the Standards for Smart Sensors and Systems -- 12.3 IEEE 1451.1 -- 12.3.1 Network-Capable Application Processor -- 12.3.2 Network Communication Models -- 12.4 IEEE 1451.2 -- 12.4.1 STIM -- 12.4 2 Transducer Electronic Data Sheet -- 12.4.3 TII -- 12.4.4 Calibration/Correction Engine -- 12.4.5 Sourcing Power to STIMs -- 12.4.6 Representing Physical Units in the TEDS -- 12.5 IEEE 1451.3 -- 12.6 IEEE 1451.4 -- 12.7 IEEE1451.5 -- 12.8 IEEE P1451.6 -- 12.9 IEEE 1451.7 -- 12.10 Extending the System to the Network -- 12.11 Application Example -- 12.12 Summary -- References -- Selected Bibliography -- Chapter 13 More Standards Impacting Sensors -- 13.1 Introduction -- 13.2 Sensor Plug and Play -- 13.3 Universal Serial Bus -- 13.4 Development Tools Establish De Facto Standards -- 13.5 Alternate Standards -- 13.5.1 Airplane Networks -- 13.5.2 Automotive Safety Network -- 13.5.3 Another Automotive Safety Network -- 13.5.4 Automotive Sensor Protocol -- 13.6 Consumer/Cell Phone Apps -- 13.7 Application Example -- 13.8 Summary -- References -- Chapter 14 Sensor Fusion -- 14.1 Introduction -- 14.2 Sensor and Other Fusion Background -- 14.3 Automotive Applications -- 14.3.1 Ranging and Vision -- 14.3.2 Sensor Fusion for Virtual Sensors -- 14.3.3 Autonomous Driving -- 14.4 Industrial (Robotic) Applications -- 14.5 Consumer Applications -- 14.5.1 Fusion Software in the Sensor -- 14.5.2 Separate Fusion Software -- 14.5.3 Flexible Fusion Software -- 14.5.4 Agnostic Sensor Fusion.

14.5.5 Simulation and Testing.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.