ORPP logo
Image from Google Jackets

Harmonic Analysis for Anisotropic Random Walks on Homogeneous Trees.

By: Contributor(s): Material type: TextTextSeries: Memoirs of the American Mathematical SocietyPublisher: Providence : American Mathematical Society, 1994Copyright date: ©1994Edition: 1st edDescription: 1 online resource (86 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470401108
Subject(s): Genre/Form: Additional physical formats: Print version:: Harmonic Analysis for Anisotropic Random Walks on Homogeneous TreesDDC classification:
  • 512/.55
LOC classification:
  • QA387 -- .F543 1994eb
Online resources:
Contents:
Intro -- Contents -- List of Figures -- Index of Notation -- Abstract -- Chapter 0. Introduction -- Chapter 1. The Green Function -- 1. Random Walks on a Tree -- 2. The Method of Paths -- 3. The Nearest Neighbor Case -- 4. The Case of a Finitely Supported Measure -- 5. Algebraicity of the Green Function -- 6. Notes and Remarks -- Chapter 2. The Spectrum and the Plancherel Measure -- 1. The Spectrum of the Random Walk in l[sup(r)]{G) -- 2. The l[sup(2)]-spectrum and the Real l[sup(1)]-spectrum -- 3. The Plancherel Formula -- 4. Notes and Remarks -- Chapter 3. Representations and their Realization on the Boundary -- 1. Boundary Theory for Eigenfunctions of the Random Walk -- 2. The Principal Series -- 3. The Complementary Series -- 4. Notes and Remarks -- Chapter 4. Irreducibility and Inequivalence -- 1. Irreducibility -- 2. Inequivalence -- 3. Notes and Remarks -- References.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- List of Figures -- Index of Notation -- Abstract -- Chapter 0. Introduction -- Chapter 1. The Green Function -- 1. Random Walks on a Tree -- 2. The Method of Paths -- 3. The Nearest Neighbor Case -- 4. The Case of a Finitely Supported Measure -- 5. Algebraicity of the Green Function -- 6. Notes and Remarks -- Chapter 2. The Spectrum and the Plancherel Measure -- 1. The Spectrum of the Random Walk in l[sup(r)]{G) -- 2. The l[sup(2)]-spectrum and the Real l[sup(1)]-spectrum -- 3. The Plancherel Formula -- 4. Notes and Remarks -- Chapter 3. Representations and their Realization on the Boundary -- 1. Boundary Theory for Eigenfunctions of the Random Walk -- 2. The Principal Series -- 3. The Complementary Series -- 4. Notes and Remarks -- Chapter 4. Irreducibility and Inequivalence -- 1. Irreducibility -- 2. Inequivalence -- 3. Notes and Remarks -- References.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.