Quantum Mechanics : An Introduction for Device Physicists and Electrical Engineers.
Material type:
- text
- computer
- online resource
- 9781000316490
- 530.12
- QC174.12 .F477 2021
Cover -- Half Title -- Title Page -- Copyright Page -- Table of contents -- Preface to the first edition -- Preface to the second edition -- Preface to the third edition -- Author -- 1 Waves and Particles -- 1.1 Introduction -- 1.2 Light as Particles-The Photoelectric Effect -- 1.3 Electrons as Waves -- 1.4 Reality and Causality -- 1.5 Connection to the Classical World -- 1.5.1 Position and Momentum -- 1.5.2 Noncommuting Operators -- 1.5.3 Another View -- 1.5.4 Wave Packets -- 1.6 Summary -- References -- Problems -- 2 The Schrödinger Equation -- 2.1 Waves and the Differential Equation -- 2.1.1 The Free Particle -- 2.1.2 A Potential Step -- Case I. E < -- V< -- sub> -- 0< -- /sub> -- -- Case II. E > -- V< -- sub> -- 0< -- /sub> -- -- 2.2 Density and Current -- 2.3 The Potential Well -- 2.3.1 The Infinite Potential Well -- 2.3.2 The Finite Potential Well -- Case I. 0 < -- E < -- V< -- sub> -- 0< -- /sub> -- -- Case II. E > -- V< -- sub> -- 0< -- /sub> -- -- 2.4 The Triangular Well -- 2.5 Uncertainty -- 2.6 Numerical Solutions of the Schrödinger Equation -- References -- Problems -- 3 Tunneling -- 3.1 The Tunnel Barrier -- 3.1.1 The Simple Rectangular Barrier -- 3.1.2 A More Complex Barrier -- 3.2 The Double Barrier -- 3.2.1 Simple, Equal Barriers -- 3.2.2 The Unequal-Barrier Case -- 3.2.3 Shape of the Resonance -- 3.3 Approximation Methods-The WKB Method -- 3.3.1 Bound States of a General Potential -- 3.3.2 Tunneling -- 3.4 Tunneling Devices -- 3.4.1 The Landauer Formulation -- 3.4.2 The Esaki Diode -- 3.4.3 The Resonant Tunneling Diode -- 3.4.4 Single-Electron Tunneling -- 3.4.5 Josephson Tunneling -- References -- Problems -- 4 Periodic Potentials -- 4.1 Atoms on a Lattice -- 4.2 Another Approach -- 4.3 Bonds and Bands -- 4.4 Electron Pairing-Superconductivity -- 4.4.1 Observable Properties.
4.4.2 Pairing and Gaps -- References -- Problems -- 5 The Harmonic Oscillator -- 5.1 The Wave Functions -- 5.2 The LC-Circuit -- 5.3 An Atomic Lattice and Phonons -- 5.4 Motion in a Quantizing Magnetic Field -- 5.4.1 Connection with the Classical Orbit -- 5.4.2 Adding Lateral Confinement -- 5.4.3 The Quantum Hall Effect -- 5.5 The Modern Standard Unit System -- References -- Problems -- 6 Operators and Bases -- 6.1 Time Dependence of Operators -- 6.2 Linear Vector Spaces -- 6.2.1 Hermitian Operators -- 6.2.2 Some Matrix Properties -- 6.2.3 The Eigenvalue Problem -- 6.3 Supersymmetry -- 6.4 The Density Matrix -- 6.5 The Wigner Function -- References -- Problems -- 7 Stationary Perturbation Theory -- 7.1 The Perturbation Series -- 7.2 Some Examples of Perturbation Theory -- 7.2.1 The Stark Effect in a Potential Well -- 7.2.2 The Shifted Harmonic Oscillator -- 7.2.3 Multiple Quantum Wells -- 7.3 An Alternative Approach-The Variational Method -- Problems -- 8 Time-Dependent Perturbation Theory -- 8.1 The Perturbation Series -- 8.2 The Interaction Representation -- 8.3 Exponential Decay -- 8.4 The Lippmann-Schwinger Equation -- 8.4.1 The Scattering State T-Matrix -- 8.4.2 Gaining the Lippmann-Schwinger Equation -- 8.4.3 Orthogonality of the Scattering States -- References -- Problems -- 9 Motion in Centrally Symmetric Potentials -- 9.1 The Two-Dimensional Harmonic Oscillator -- 9.1.1 Rectangular Coordinates -- 9.1.2 Polar Coordinates and Angular Momentum -- 9.1.3 Splitting the Angular Momentum States with a Magnetic Field -- 9.2 The Hydrogen Atom -- 9.2.1 The Radial Equation -- 9.2.2 Angular Solutions -- 9.2.3 Angular Momentum Again -- 9.2.4 Atomic Energy Levels -- 9.3 The Covalent Bond in Semiconductors -- 9.4 Hydrogenic Impurities in Semiconductors -- References -- Problems -- 10 Spin Angular Momentum -- 10.1 Spin Angular Momentum.
10.2 Two-Level Systems -- 10.3 Systems of Identical Particles -- 10.4 Spin Effects in Semiconductors -- 10.4.1 The Spin-Orbit Interaction -- 10.4.2 Bulk Inversion Asymmetry -- 10.4.3 Structural Inversion Asymmetry -- References -- Problems -- 11 An Introduction to Quantum Computing -- 11.1 Qubits and Entanglement -- 11.1.1 Bits and Qubits -- 11.1.2 Entanglement -- 11.2 The Jaynes-Cummings Model -- 11.3 Quantum Dots for Qubits -- 11.3.1 31P Donors -- 11.3.2 Double Quantum Dots -- 11.3.3 NV Centers -- 11.4 Josephson Junctions -- 11.4.1 The SQUID -- 11.4.2 Charge Qubits -- 11.4.3 Flux Qubits -- 11.4.4 The Hybrid Charge-Flux Qubit -- 11.5 Optical Qubits -- References -- Solutions to Selected Problems -- Index.
Quantum Mechanics: An Introduction for Device Physicists and Electrical Engineers, Third Edition provides a complete course in quantum mechanics for students of semiconductor device physics and electrical engineering.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.