ORPP logo
Image from Google Jackets

Nanomagnetism : Applications and Perspectives.

By: Contributor(s): Material type: TextTextSeries: Applications of Nanotechnology SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2017Copyright date: ©2017Edition: 1st edDescription: 1 online resource (349 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783527699056
Subject(s): Genre/Form: Additional physical formats: Print version:: NanomagnetismDDC classification:
  • 538
LOC classification:
  • QC761.N366 2017
Online resources:
Contents:
Nanomagnetism: Applications and Perspectives -- Series Editor Preface -- About the Series Editor -- Contents -- Part One: Spin Electronics and Magnetic Sensing Applications -- 1: Introduction on Magnetic Sensing and Spin Electron -- 1.1 Magnetic Fields -- 1.1.1 Introduction -- 1.1.2 Magnetic Field, Magnetic Induction, and Units -- 1.1.3 Magnetic Materials -- 1.1.4 Magnetic Field Created by a Magnet -- 1.1.5 Magnetic Fields Created by Electrical Currents -- 1.1.6 Magnetic Thin Films -- 1.1.6.1 Magnetic Anisotropy -- 1.1.6.2 Magnetic Domains -- 1.2 Magnetic Field Sensing -- 1.2.1 Magnetic Sensors for DC and Low-Frequency Applications -- 1.2.2 Magnetic Sensors for High-Frequency Applications -- 1.2.3 Very Sensitive Magnetic Sensors -- 1.3 Introduction to Spin Electronics -- 1.3.1 Bases -- 1.3.1.1 Spin Polarization -- 1.3.1.2 Spin Diffusion Length -- 1.3.1.3 Spin Currents and Spin Hall Effects -- 1.4 Main Applications of Spin Electronics -- 1.4.1 GMR and TMR Sensors -- 1.4.1.1 Principle -- 1.4.1.2 Spin Valve Devices -- 1.4.1.3 Electric Response -- 1.4.2 Spin Electronics Devices for Storage, MRAM, and Magnetic Logics -- 1.4.3 Spin Dynamics and Magnonics -- References -- 2: Spin Electronics for Biomagnetism and Nuclear Magnetic Resonance -- 2.1 Introduction -- 2.2 Biomagnetic Signals Detection with Spin Electronics Sensors -- 2.2.1 Biomagnetism -- 2.2.2 Sensors for Biomagnetism at Large Scale -- 2.2.2.1 SQUIDs and Atomic Magnetometers -- 2.2.2.2 Mixed Sensors -- 2.2.2.3 MCG Recordings with Mixed Sensors -- 2.2.3 Sensors for Biomagnetism at Local Scale -- 2.2.3.1 Specificities and State of the Art -- 2.2.3.2 Magnetrodes -- 2.3 Nuclear Magnetic Resonance -- 2.3.1 Introduction to NMR -- 2.3.1.1 Spin Manipulation -- 2.3.1.2 Magnetic Resonance Imaging -- 2.3.2 Low-Field MRI -- 2.3.3 Local NMR Spectroscopy -- 2.4 Conclusion and Perspectives -- References.
3: Large-Volume Applications of Spin Electronics-Based Sensors -- 3.1 Introduction -- 3.2 General Concepts -- 3.2.1 GMR or TMR Spin Valves? -- 3.2.1.1 Sensitivity and Detectivity -- 3.2.1.2 Resistance and Design Constraints -- 3.2.1.3 ESD Sensitivity and CMOS Integration -- 3.2.1.4 Hysteresis, Field, and Temperature Stability -- 3.2.2 Electronics -- 3.3 Read Heads -- 3.4 Current Sensors -- 3.4.1 Principle -- 3.4.2 Low-Current Integrated Sensors -- 3.4.3 High-Current Sensors -- 3.5 Angle and Compass Sensors -- 3.5.1 Principle of 2D and 3D Measurements -- 3.5.2 Angle Sensors: The Saturated Configuration -- 3.5.3 Compass: The Linear Configuration -- 3.6 Speed Sensors -- 3.6.1 General Principle -- 3.6.2 Rotating Magnets -- 3.6.3 Rotating Ferrous Targets -- 3.7 Switches and Position Sensors -- 3.7.1 Switches -- 3.7.2 Linear Position Sensors -- 3.8 Conclusion and Perspectives -- References -- 4: Magnetic Random Access Memories -- 4.1 Introduction -- 4.2 MRAM General Principles -- 4.3 Field-induced Switching MRAM -- 4.3.1 Stoner-Wohlfarth MRAM -- 4.3.2 Toggle MRAM -- 4.3.3 Thermally Assisted MRAM -- 4.4 Spin Transfer Torque Switching MRAM -- 4.4.1 In-plane Magnetized STT MRAM -- 4.4.2 Out-of-plane Magnetized STT-MRAM -- 4.5 Emerging MRAM Technologies -- 4.5.1 Thermally Induced Anisotropy Reorientation-Assisted Switching -- 4.5.2 Electric Field-Assisted Switching -- 4.5.3 Three Terminal Devices -- 4.6 Conclusions -- Acknowledgment -- References -- 5: Spin Electronics for Non Destructive Testing -- 5.1 Introduction -- 5.2 Basic Concepts of Electromagnetic Testing Methods -- 5.2.1 Magnetic Flux Leakage Testing and Magnetic Particle Inspection -- 5.2.2 Eddy Current Testing -- 5.2.3 Magnetic Field Sensors in NDT -- 5.3 GMR in MFL Testing -- 5.3.1 Adapted GMR Sensor Arrays -- 5.3.2 Automated Testing of Roller Bearings -- 5.4 MR and Eddy Current Testing.
5.4.1 Emitter Design Study for Surface-Breaking Defects -- 5.5 Concluding Remarks -- Acknowledgment -- References -- 6: Diamond Spin Sensors: A New Way to Probe Nanomagnetism -- 6.1 Introduction -- 6.2 Magnetic Sensing with Nitrogen Vacancy Defects in Diamond -- 6.2.1 Physics of the NV Defect in Diamond -- 6.2.1.1 Optical Properties -- 6.2.1.2 Optically Detected Magnetic Resonance -- 6.2.1.3 Magnetometry -- 6.2.2 Magnetic Sensing Methods -- 6.2.2.1 ODMR Spectroscopy -- 6.2.2.2 Spin Phase Sensing -- 6.2.2.3 Spin Relaxometry -- 6.3 Experimental Implementations for Sensing and Imaging -- 6.3.1 With a Scanning NV Defect -- 6.3.2 With a Stationary NV Defect -- 6.3.3 Wide-field Imaging of an NV Ensemble -- 6.3.4 Challenges and Further Improvements -- 6.3.4.1 Stand-off Distance -- 6.3.4.2 Sensor Readout -- 6.3.4.3 Diamond Material -- 6.4 Applications -- 6.4.1 Imaging Spin Textures in Ultrathin Ferromagnets -- 6.4.2 Single-Molecule Imaging and Nano-MRI -- 6.5 Conclusions -- References -- Part Two: Magnetic Nanoparticles -- 7: Introduction to Magnetic Nanoparticles -- 7.1 Introduction -- 7.2 Main Properties of Magnetic Nanoparticles -- 7.2.1 Composition and Size -- 7.2.2 Main Magnetic Properties -- 7.3 Synthesis of Magnetic Nanoparticles -- 7.3.1 Toxicity -- 7.4 Main Classes of Applications of Magnetic Nanoparticles -- 7.4.1 Contrast Agents for MRI -- 7.4.2 Labeled Nanoparticles for Cell Manipulation and Counting -- 7.4.3 Hyperthermia for Cancer Treatment -- 7.4.4 Ferrofluids -- 7.4.5 Magnetic Particle Imaging -- 7.5 Conclusions and Perspectives -- References -- 8: Use of Magnetic Nanoparticles in Biomedical Applications -- 8.1 Introduction -- 8.2 The Physics of Magnetic Nanoparticles Used in Biomedical Applications -- 8.3 Applied Nanotechnology: Biomedical Applications of MNP -- 8.3.1 Therapeutic Applications -- 8.3.2 Diagnostic Applications.
8.4 Preparation of Magnetic Nanoparticles for Biomedical Applications -- 8.5 MNP Imaging in Biomedicine -- 8.5.1 Magnetorelaxometry -- 8.5.1.1 Signal Generation in Magnetorelaxometry -- 8.5.1.2 Analytical MRX -- 8.5.1.3 MRX Imaging -- 8.5.2 Magnetic Particle Spectroscopy and Magnetic Particle Imaging -- 8.5.2.1 Magnetic Particle Spectroscopy -- 8.5.2.2 MPI as an Alternative Approach to Determine MNP Distributions -- 8.6 Summary and Conclusions -- References -- 9: Spintronic Biochips: From the Laboratory to Pre-Clinical Applications -- 9.1 Introduction -- 9.2 Static Multiplexed Biosensors -- 9.2.1 State of the Art -- 9.2.2 Sensor Architecture and System Integration -- 9.2.3 Biochip Functionalization -- 9.2.4 The Spintronic DNA Chip -- 9.2.4.1 Detecting Pathogenic DNA in Biological Samples -- 9.2.4.2 Sample Preparation: Nucleic Acid Purification Using Magnetic Particles -- 9.2.5 The Spintronic Protein Chip: Detection of Biomarkers for Ischemic Stroke -- 9.2.5.1 Detecting Protein Biomarkers (MMP9) -- 9.2.5.2 Protocol Description -- 9.3 Magnetoresistive Cytometers and the Detection of Rare Cells in Blood/Serum -- 9.3.1 State of the Art -- 9.3.2 Sensor Architecture and System Integration -- 9.3.3 Magnetic Bead Functionalization -- 9.3.4 Detection of SW480 Cells in PBS -- 9.3.5 Detection of CTCs in Serum -- 9.4 Lateral Flow Magnetoresistive Biochips -- 9.5 Conclusions -- Acknowledgment -- References -- Part Three: Future Applications -- 10: Promising Prospects for Chiral Domain Walls and Magnetic Skyrmions as a New Way to Manipulate and Store Information -- 10.1 Introduction -- 10.2 Origin and Consequences of an Antisymmetric Exchange Interaction -- 10.2.1 From Antisymmetric Exchange Interaction to Chiral Magnetic Textures -- 10.2.2 First Observations of Chiral Magnetic States in Magnetic Thin Films -- 10.2.3 Chiral Interaction and Skyrmion Lattices.
10.3 Chiral Néel Walls in Systems with Perpendicular Magnetic Anisotropy and Dzyaloshinskii-Moriya Interaction -- 10.3.1 Dynamics of Chiral Magnetic Domain Wall -- 10.3.2 DW Dynamics as a Probe of the Strength of the DM Interaction -- 10.3.3 Internal Spin Texture of Chiral Domain Walls -- 10.4 Magnetic Skyrmions in Noncrystalline Materials for Stabilization at Room Temperature -- 10.4.1 Room-Temperature Observation of Skyrmions Stabilized by Interfacial Chiral Interaction -- 10.4.2 Creation and Displacement of Skyrmionic Bubbles through Spin Torque -- 10.5 New Device Concepts Based on Chiral Magnetic Objects -- 10.5.1 Chiral Domain Wall-Based Racetrack Memory -- 10.5.2 Skyrmion-Based Racetrack: Advantages Over DW -- 10.5.3 Skyrmion-Based Multilevel MTJs -- 10.5.4 Skyrmion-Based High-Frequency Oscillators -- 10.5.5 Skyrmion Spin Logic Devices -- 10.6 Conclusions and Perspectives -- Acknowledgments -- References -- 11: Nanomagnetic Devices -- 11.1 Introduction -- 11.2 Memory and Storage-Class Memory -- 11.2.1 MRAM -- 11.2.2 Racetrack Shift Register -- 11.2.3 Ratchet Shift Register -- 11.3 Logic Devices -- 11.3.1 The Requirements of Digital Logic -- 11.3.2 Nanomagnet Logic -- 11.3.3 Domain-Wall Logic -- 11.3.4 All-Spin Devices -- 11.3.4.1 A Spin Transfer Torque Domain-Wall Device -- 11.3.4.2 All-Spin Logic -- 11.3.4.3 Spin-Wave Devices -- 11.4 Concluding Remarks -- References -- 12: Microwave Nanomagnetism: Spin Torque Oscillators and Magnonics -- 12.1 Introduction -- 12.2 Basics of Magnetization Dynamics -- 12.3 Spin Torque Oscillators -- 12.3.1 Basics of Spin Torque Oscillators -- 12.3.1.1 Working Principles -- 12.3.1.2 Microwave Characteristics -- 12.3.2 Frequency Generation and Signal Processing -- 12.3.3 Frequency Detection -- 12.3.4 Magnetic Recording -- 12.3.5 Advanced Concepts -- 12.4 Magnonics -- 12.4.1 Spin-Wave Basics.
12.4.2 Control of Spin-Wave Propagation.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Nanomagnetism: Applications and Perspectives -- Series Editor Preface -- About the Series Editor -- Contents -- Part One: Spin Electronics and Magnetic Sensing Applications -- 1: Introduction on Magnetic Sensing and Spin Electron -- 1.1 Magnetic Fields -- 1.1.1 Introduction -- 1.1.2 Magnetic Field, Magnetic Induction, and Units -- 1.1.3 Magnetic Materials -- 1.1.4 Magnetic Field Created by a Magnet -- 1.1.5 Magnetic Fields Created by Electrical Currents -- 1.1.6 Magnetic Thin Films -- 1.1.6.1 Magnetic Anisotropy -- 1.1.6.2 Magnetic Domains -- 1.2 Magnetic Field Sensing -- 1.2.1 Magnetic Sensors for DC and Low-Frequency Applications -- 1.2.2 Magnetic Sensors for High-Frequency Applications -- 1.2.3 Very Sensitive Magnetic Sensors -- 1.3 Introduction to Spin Electronics -- 1.3.1 Bases -- 1.3.1.1 Spin Polarization -- 1.3.1.2 Spin Diffusion Length -- 1.3.1.3 Spin Currents and Spin Hall Effects -- 1.4 Main Applications of Spin Electronics -- 1.4.1 GMR and TMR Sensors -- 1.4.1.1 Principle -- 1.4.1.2 Spin Valve Devices -- 1.4.1.3 Electric Response -- 1.4.2 Spin Electronics Devices for Storage, MRAM, and Magnetic Logics -- 1.4.3 Spin Dynamics and Magnonics -- References -- 2: Spin Electronics for Biomagnetism and Nuclear Magnetic Resonance -- 2.1 Introduction -- 2.2 Biomagnetic Signals Detection with Spin Electronics Sensors -- 2.2.1 Biomagnetism -- 2.2.2 Sensors for Biomagnetism at Large Scale -- 2.2.2.1 SQUIDs and Atomic Magnetometers -- 2.2.2.2 Mixed Sensors -- 2.2.2.3 MCG Recordings with Mixed Sensors -- 2.2.3 Sensors for Biomagnetism at Local Scale -- 2.2.3.1 Specificities and State of the Art -- 2.2.3.2 Magnetrodes -- 2.3 Nuclear Magnetic Resonance -- 2.3.1 Introduction to NMR -- 2.3.1.1 Spin Manipulation -- 2.3.1.2 Magnetic Resonance Imaging -- 2.3.2 Low-Field MRI -- 2.3.3 Local NMR Spectroscopy -- 2.4 Conclusion and Perspectives -- References.

3: Large-Volume Applications of Spin Electronics-Based Sensors -- 3.1 Introduction -- 3.2 General Concepts -- 3.2.1 GMR or TMR Spin Valves? -- 3.2.1.1 Sensitivity and Detectivity -- 3.2.1.2 Resistance and Design Constraints -- 3.2.1.3 ESD Sensitivity and CMOS Integration -- 3.2.1.4 Hysteresis, Field, and Temperature Stability -- 3.2.2 Electronics -- 3.3 Read Heads -- 3.4 Current Sensors -- 3.4.1 Principle -- 3.4.2 Low-Current Integrated Sensors -- 3.4.3 High-Current Sensors -- 3.5 Angle and Compass Sensors -- 3.5.1 Principle of 2D and 3D Measurements -- 3.5.2 Angle Sensors: The Saturated Configuration -- 3.5.3 Compass: The Linear Configuration -- 3.6 Speed Sensors -- 3.6.1 General Principle -- 3.6.2 Rotating Magnets -- 3.6.3 Rotating Ferrous Targets -- 3.7 Switches and Position Sensors -- 3.7.1 Switches -- 3.7.2 Linear Position Sensors -- 3.8 Conclusion and Perspectives -- References -- 4: Magnetic Random Access Memories -- 4.1 Introduction -- 4.2 MRAM General Principles -- 4.3 Field-induced Switching MRAM -- 4.3.1 Stoner-Wohlfarth MRAM -- 4.3.2 Toggle MRAM -- 4.3.3 Thermally Assisted MRAM -- 4.4 Spin Transfer Torque Switching MRAM -- 4.4.1 In-plane Magnetized STT MRAM -- 4.4.2 Out-of-plane Magnetized STT-MRAM -- 4.5 Emerging MRAM Technologies -- 4.5.1 Thermally Induced Anisotropy Reorientation-Assisted Switching -- 4.5.2 Electric Field-Assisted Switching -- 4.5.3 Three Terminal Devices -- 4.6 Conclusions -- Acknowledgment -- References -- 5: Spin Electronics for Non Destructive Testing -- 5.1 Introduction -- 5.2 Basic Concepts of Electromagnetic Testing Methods -- 5.2.1 Magnetic Flux Leakage Testing and Magnetic Particle Inspection -- 5.2.2 Eddy Current Testing -- 5.2.3 Magnetic Field Sensors in NDT -- 5.3 GMR in MFL Testing -- 5.3.1 Adapted GMR Sensor Arrays -- 5.3.2 Automated Testing of Roller Bearings -- 5.4 MR and Eddy Current Testing.

5.4.1 Emitter Design Study for Surface-Breaking Defects -- 5.5 Concluding Remarks -- Acknowledgment -- References -- 6: Diamond Spin Sensors: A New Way to Probe Nanomagnetism -- 6.1 Introduction -- 6.2 Magnetic Sensing with Nitrogen Vacancy Defects in Diamond -- 6.2.1 Physics of the NV Defect in Diamond -- 6.2.1.1 Optical Properties -- 6.2.1.2 Optically Detected Magnetic Resonance -- 6.2.1.3 Magnetometry -- 6.2.2 Magnetic Sensing Methods -- 6.2.2.1 ODMR Spectroscopy -- 6.2.2.2 Spin Phase Sensing -- 6.2.2.3 Spin Relaxometry -- 6.3 Experimental Implementations for Sensing and Imaging -- 6.3.1 With a Scanning NV Defect -- 6.3.2 With a Stationary NV Defect -- 6.3.3 Wide-field Imaging of an NV Ensemble -- 6.3.4 Challenges and Further Improvements -- 6.3.4.1 Stand-off Distance -- 6.3.4.2 Sensor Readout -- 6.3.4.3 Diamond Material -- 6.4 Applications -- 6.4.1 Imaging Spin Textures in Ultrathin Ferromagnets -- 6.4.2 Single-Molecule Imaging and Nano-MRI -- 6.5 Conclusions -- References -- Part Two: Magnetic Nanoparticles -- 7: Introduction to Magnetic Nanoparticles -- 7.1 Introduction -- 7.2 Main Properties of Magnetic Nanoparticles -- 7.2.1 Composition and Size -- 7.2.2 Main Magnetic Properties -- 7.3 Synthesis of Magnetic Nanoparticles -- 7.3.1 Toxicity -- 7.4 Main Classes of Applications of Magnetic Nanoparticles -- 7.4.1 Contrast Agents for MRI -- 7.4.2 Labeled Nanoparticles for Cell Manipulation and Counting -- 7.4.3 Hyperthermia for Cancer Treatment -- 7.4.4 Ferrofluids -- 7.4.5 Magnetic Particle Imaging -- 7.5 Conclusions and Perspectives -- References -- 8: Use of Magnetic Nanoparticles in Biomedical Applications -- 8.1 Introduction -- 8.2 The Physics of Magnetic Nanoparticles Used in Biomedical Applications -- 8.3 Applied Nanotechnology: Biomedical Applications of MNP -- 8.3.1 Therapeutic Applications -- 8.3.2 Diagnostic Applications.

8.4 Preparation of Magnetic Nanoparticles for Biomedical Applications -- 8.5 MNP Imaging in Biomedicine -- 8.5.1 Magnetorelaxometry -- 8.5.1.1 Signal Generation in Magnetorelaxometry -- 8.5.1.2 Analytical MRX -- 8.5.1.3 MRX Imaging -- 8.5.2 Magnetic Particle Spectroscopy and Magnetic Particle Imaging -- 8.5.2.1 Magnetic Particle Spectroscopy -- 8.5.2.2 MPI as an Alternative Approach to Determine MNP Distributions -- 8.6 Summary and Conclusions -- References -- 9: Spintronic Biochips: From the Laboratory to Pre-Clinical Applications -- 9.1 Introduction -- 9.2 Static Multiplexed Biosensors -- 9.2.1 State of the Art -- 9.2.2 Sensor Architecture and System Integration -- 9.2.3 Biochip Functionalization -- 9.2.4 The Spintronic DNA Chip -- 9.2.4.1 Detecting Pathogenic DNA in Biological Samples -- 9.2.4.2 Sample Preparation: Nucleic Acid Purification Using Magnetic Particles -- 9.2.5 The Spintronic Protein Chip: Detection of Biomarkers for Ischemic Stroke -- 9.2.5.1 Detecting Protein Biomarkers (MMP9) -- 9.2.5.2 Protocol Description -- 9.3 Magnetoresistive Cytometers and the Detection of Rare Cells in Blood/Serum -- 9.3.1 State of the Art -- 9.3.2 Sensor Architecture and System Integration -- 9.3.3 Magnetic Bead Functionalization -- 9.3.4 Detection of SW480 Cells in PBS -- 9.3.5 Detection of CTCs in Serum -- 9.4 Lateral Flow Magnetoresistive Biochips -- 9.5 Conclusions -- Acknowledgment -- References -- Part Three: Future Applications -- 10: Promising Prospects for Chiral Domain Walls and Magnetic Skyrmions as a New Way to Manipulate and Store Information -- 10.1 Introduction -- 10.2 Origin and Consequences of an Antisymmetric Exchange Interaction -- 10.2.1 From Antisymmetric Exchange Interaction to Chiral Magnetic Textures -- 10.2.2 First Observations of Chiral Magnetic States in Magnetic Thin Films -- 10.2.3 Chiral Interaction and Skyrmion Lattices.

10.3 Chiral Néel Walls in Systems with Perpendicular Magnetic Anisotropy and Dzyaloshinskii-Moriya Interaction -- 10.3.1 Dynamics of Chiral Magnetic Domain Wall -- 10.3.2 DW Dynamics as a Probe of the Strength of the DM Interaction -- 10.3.3 Internal Spin Texture of Chiral Domain Walls -- 10.4 Magnetic Skyrmions in Noncrystalline Materials for Stabilization at Room Temperature -- 10.4.1 Room-Temperature Observation of Skyrmions Stabilized by Interfacial Chiral Interaction -- 10.4.2 Creation and Displacement of Skyrmionic Bubbles through Spin Torque -- 10.5 New Device Concepts Based on Chiral Magnetic Objects -- 10.5.1 Chiral Domain Wall-Based Racetrack Memory -- 10.5.2 Skyrmion-Based Racetrack: Advantages Over DW -- 10.5.3 Skyrmion-Based Multilevel MTJs -- 10.5.4 Skyrmion-Based High-Frequency Oscillators -- 10.5.5 Skyrmion Spin Logic Devices -- 10.6 Conclusions and Perspectives -- Acknowledgments -- References -- 11: Nanomagnetic Devices -- 11.1 Introduction -- 11.2 Memory and Storage-Class Memory -- 11.2.1 MRAM -- 11.2.2 Racetrack Shift Register -- 11.2.3 Ratchet Shift Register -- 11.3 Logic Devices -- 11.3.1 The Requirements of Digital Logic -- 11.3.2 Nanomagnet Logic -- 11.3.3 Domain-Wall Logic -- 11.3.4 All-Spin Devices -- 11.3.4.1 A Spin Transfer Torque Domain-Wall Device -- 11.3.4.2 All-Spin Logic -- 11.3.4.3 Spin-Wave Devices -- 11.4 Concluding Remarks -- References -- 12: Microwave Nanomagnetism: Spin Torque Oscillators and Magnonics -- 12.1 Introduction -- 12.2 Basics of Magnetization Dynamics -- 12.3 Spin Torque Oscillators -- 12.3.1 Basics of Spin Torque Oscillators -- 12.3.1.1 Working Principles -- 12.3.1.2 Microwave Characteristics -- 12.3.2 Frequency Generation and Signal Processing -- 12.3.3 Frequency Detection -- 12.3.4 Magnetic Recording -- 12.3.5 Advanced Concepts -- 12.4 Magnonics -- 12.4.1 Spin-Wave Basics.

12.4.2 Control of Spin-Wave Propagation.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.