Biodegradable Polyesters.
Material type:
- text
- computer
- online resource
- 9783527656981
- 620.19204223
- TP1180.P6 -- .B563 2015eb
Cover -- Contents -- List of Contributors -- List of Abbreviations and Symbols -- Preface -- Chapter 1 Biodegradable Polyesters: Synthesis, Properties, Applications -- 1.1 Historical Overview on the Origin of Polymer Science and Synthesis of Polyamides and Polyesters -- 1.1.1 Synthesis of Polyamides -- 1.1.2 Initial Knowledge about Polyesters -- 1.2 Publication Trend of Representative Biodegradable and Nonbiodegradable Polyesters in the Past Century -- 1.3 Biodegradable Polyesters -- 1.3.1 Biodegradable Aliphatic Polyesters and Their Copolymers -- 1.3.1.1 Poly(lactic acid) -- 1.3.1.2 Polyglycolide or Poly(glycolic acid) -- 1.3.1.3 Poly(caprolactone) -- 1.4 Concluding Remarks -- Acknowledgment -- References -- Chapter 2 Functional (Bio)degradable Polyesters by Radical Ring-Opening Polymerization -- 2.1 Introduction -- 2.2 Radical Ring-Opening Polymerization (RROP) of Cyclic Ketene Acetals -- 2.2.1 Starting Monomers: Cyclic Ketene Acetals -- 2.2.2 Radical Ring-Opening Polymerization Mechanism -- 2.2.3 Functional Polyesters by Conventional and Controlled Radical Homopolymerization of CKAs -- 2.2.4 Functional Polyesters by Copolymerization of CKAs and Vinyl Monomers -- 2.3 Conclusions -- References -- Chapter 3 Microbial Synthesis of Biodegradable Polyesters: Processes, Products, Applications -- 3.1 Introduction -- 3.2 Biogenesis of Microbial Polyhydroxyalkanoate Granules -- 3.3 The Diversity of Biopolyesters -- 3.4 Polyester (PHA) Synthases are the Key Enzymes -- 3.5 Catalytic Reaction Mechanism -- 3.6 PHA Inclusions: Self-Assembly and Structure -- 3.7 Industrial Production of Bacterial Polyhydroxyalkanoates: PHAs via Fermentation -- 3.8 Application Opportunities of Bacterial Polyhydroxyalkanoates -- 3.8.1 In Energy Industry: Biofuels Based on PHAs -- 3.8.2 In Material Industry: PHAs as Polymeric Materials.
3.8.2.1 PHAs as Biodegradable Plastics and Fiber Materials -- 3.8.2.2 PHAs as Medical Implant Materials -- 3.8.2.3 PHAs as Drug Delivery Carrier -- 3.8.3 Fine Chemical Industry: PHA Chiral Monomers -- 3.8.4 Application of PHA Granule Surface Proteins -- 3.8.5 Production of Tailor-Made Biopolyester Nanoparticles and Potential Applications -- 3.8.6 Future Development of PHA-Based Industry -- 3.8.6.1 The Development of Low-Cost PHA Production Technology -- 3.8.6.2 Unusual PHAs with Special Properties -- 3.8.6.3 High Value Added Applications -- 3.8.6.4 Other Future Applications -- 3.8.6.5 Microbial Synthesis of Poly(lactic acid) (PLA) -- 3.8.7 Applications of PHA Inclusions as Functionalized Biobeads -- 3.8.7.1 Bioseparations -- 3.8.7.2 Drug Delivery -- 3.8.7.3 Protein Purification -- 3.8.7.4 Enzyme Immobilization -- 3.8.7.5 Diagnostics and Imaging -- 3.8.7.6 Vaccine Delivery -- 3.9 Conclusions and Outlook -- Acknowledgments -- References -- Chapter 4 Synthesis, Properties, and Mathematical Modeling of Biodegradable Aliphatic Polyesters Based on 1,3-Propanediol and Dicarboxylic Acids -- 4.1 Introduction -- 4.1.1 Aliphatic Polyesters -- 4.1.2 Production of 1,3-Propanediol -- 4.2 Synthesis of Aliphatic Polyesters from 1,3-Propanediol and Aliphatic Acids -- 4.3 Properties of Poly(propylene alkylenedicarboxylates) -- 4.4 Mathematical Modeling of the Synthesis of Aliphatic Polyesters -- 4.4.1 Brief History of Step Reaction Kinetic Modeling -- 4.4.2 Mathematical Modeling of the Esterification Reaction for the Synthesis of Aliphatic Polyesters -- 4.4.2.1 Literature Survey -- 4.4.2.2 Modeling Approaches -- 4.4.2.3 Modeling Using the Functional Group Approach -- 4.4.2.4 Modeling Using an Overall Reaction Model -- 4.4.2.5 Modeling the Effect of Silica Nanoparticles on the Esterification Reaction.
4.4.3 Modeling the Polycondensation Reaction Kinetics for the Synthesis of Aliphatic Polyesters -- 4.4.3.1 Reaction Scheme -- 4.4.3.2 Development of the Mathematical Model -- 4.4.3.3 Simulation Model Results -- 4.5 Conclusions -- References -- Chapter 5 Crystallization of Poly(lactic acid) -- 5.1 Introduction -- 5.2 Crystal Polymorphism in Poly(L-lactic acid) -- 5.3 Kinetics of Crystal Nucleation -- 5.4 Crystal Growth Rate -- 5.5 Influence of Comonomer Content -- 5.6 Stereocomplex Crystals of Poly( L-lactide)/Poly( D-lactide) -- 5.7 Conclusions -- References -- Chapter 6 Shape Memory Systems with Biodegradable Polyesters -- 6.1 Introduction -- 6.2 Shape Memory Polymer Systems -- 6.2.1 Homopolymers and Composites -- 6.2.1.1 Linear -- 6.2.1.2 Cross-linked -- 6.2.2 Copolymers and Composites -- 6.2.2.1 Linear -- 6.2.2.2 Cross-linked -- 6.2.3 Polyester-Containing Polyurethanes and Related Composites -- 6.2.4 Blends and Composites -- 6.2.4.1 Linear -- 6.2.4.2 Cross-linked -- 6.2.5 Polymers with Thermosets -- 6.2.5.1 Conetworks -- 6.2.5.2 Semi-Interpenetrating Network -- 6.2.5.3 Interpenetrating Network -- 6.3 Applications -- 6.4 Outlook and Future Trends -- Acknowledgments -- References -- Chapter 7 Electrospun Scaffolds of Biodegradable Polyesters: Manufacturing and Biomedical Application -- 7.1 Introduction -- 7.2 Preparation of Polyesters for the Electrospinning Method -- 7.3 Improving the Bioactivity of Electrospun Polyesters -- 7.3.1 Surface Modification Techniques -- 7.3.1.1 Wet Chemical Surface Modification -- 7.3.1.2 Plasma -- 7.3.1.3 Ozone -- 7.3.1.4 Ultraviolet Radiation -- 7.3.1.5 Functionalization of Polyester Electrospun Scaffolds with Bioactive Molecules -- 7.3.2 Pretreatments: Association of Polyesters with Biomolecules before Electrospinning -- 7.3.2.1 Blends of Polyesters with Other Polymers and/or Biomolecules.
7.3.2.2 Co-electrospinning and Electrospraying -- 7.4 Applications -- 7.5 Conclusions -- References -- Chapter 8 Systematic Development of Electrospun PLA/PCL Fiber Hybrid Mats: Preparation, Material Characterization, and Application in Drug Delivery -- 8.1 Introduction -- 8.2 Material Preparation and Characterization -- 8.3 Morphological Observations -- 8.3.1 Effect of Solution Viscosity -- 8.3.2 Effect of Blend Ratio -- 8.3.3 Effect of Solvents -- 8.4 Crystalline Structures -- 8.5 Thermal Properties -- 8.6 FTIR Analysis -- 8.7 TCH Drug Release -- 8.8 Fiber Biodegradability -- 8.9 Conclusions -- References -- Chapter 9 Environment-Friendly Methods for Converting Biodegradable Polyesters into Nano-Sized Materials -- 9.1 Tissue Engineering in Medicine and the Polymeric Materials Needed -- 9.2 MFC Concept and its Potential for Biomedical Applications -- 9.3 Effect of Hydrogen Bonding in Polymer Blends on Nano-Morphology -- 9.4 Mechanism of Nano-Morphology Formation in Polymer Blends without and with Hydrogen Bonding -- 9.5 Biomedical Application Opportunities of Nano-Sized Polymers -- 9.6 Conclusions -- Acknowledgments -- References -- Chapter 10 Highly Toughened Polylactide-Based Materials through Melt-Blending Techniques -- 10.1 Introduction -- 10.1.1 Polylactide as a Bio-based Alternative -- 10.1.2 Polylactide and Its Industrial Production -- 10.1.3 Main Properties of PLA -- 10.2 Polylactide Strengthening and Strategies -- 10.2.1 Impact and Toughening Mechanisms: General Considerations -- 10.2.2 Rubber-Toughened Polylactide -- 10.2.3 Nanoparticle-Mediated Compatibilization Process -- 10.2.4 Interpenetrating Networks and Self-Assembling of PLA-Based Materials -- 10.3 Crystallization-Induced Toughness and Morphological Control -- 10.4 Conclusions -- References.
Chapter 11 Electrospun Biopolymer Nanofibers and Their Composites for Drug Delivery Applications -- 11.1 Introduction -- 11.2 Simply Blended Drug/Biopolymer Nanofibers by Conventional Electrospinning for Drug Delivery -- 11.2.1 Drug-Loaded Single-Component Biopolymer Nanofibers -- 11.2.2 Drug-Loaded Multicomponent Biopolymer Nanofibers -- 11.2.3 Drug-Loaded Nanoparticle/Biopolymer Composites -- 11.3 Uniquely Encapsulated Drug/Biopolymer Nanofiber Systems for Drug Delivery -- 11.3.1 Coaxial Electrospun Drug/Biopolymer Nanofibers -- 11.3.2 Emulsion Electrospun Drug/Biopolymer Nanofibers -- 11.3.3 Electrosprayed Drug/Biopolymer Nanofibers -- 11.4 Conclusions and Outlook -- Acknowledgment -- References -- Chapter 12 Biodegradable Polyesters Polymer-Polymer Composites with Improved Properties for Potential Stent Applications -- 12.1 Introduction -- 12.2 Stenting Development -- 12.2.1 Bare Metal Stents -- 12.2.2 Coated Metal Stents -- 12.2.3 Drug-Eluting Stents -- 12.2.4 Recap and the Next Phase of Stent Evolution: Biodegradable Stents -- 12.3 Stents - an Engineering Point of View -- 12.3.1 Stent Deployment: the Need for Ductility -- 12.3.2 Importance of Creep after Implantation -- 12.3.3 A Vessel Is Not Static: Material Fatigue Considerations -- 12.3.4 Material Degradation: a Critical Variable -- 12.3.5 Engineering Solutions versus Clinical Implications -- 12.4 Biodegradable Stents -- 12.4.1 Selection Criteria for Biodegradable Stent Materials -- 12.5 The MFC Concept for Preparation of Polymer-Polymer Composites with Superior Mechanical Properties -- 12.5.1 Preparation of Polymer-Polymer Composites from PLLA/PGA Blends -- 12.5.2 MFC Film Molding -- 12.6 Properties of PLA/PGA Polymer-Polymer Nanofibrillar Composites -- 12.6.1 Morphology of PLA/PGA Nano-/Microfibrillar Polymer-Polymer Composites.
12.6.2 Mechanical Properties of PLA/PGA Nano-/Microfibrillar Polymer-Polymer Nanofibrillar Composites.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.