ORPP logo
Image from Google Jackets

Trends in Oil and Gas Corrosion Research and Technologies : Production and Transmission.

By: Material type: TextTextSeries: Woodhead Publishing Series in Energy SeriesPublisher: San Diego : Elsevier Science & Technology, 2017Copyright date: ©2017Edition: 1st edDescription: 1 online resource (928 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780081012192
Subject(s): Genre/Form: Additional physical formats: Print version:: Trends in Oil and Gas Corrosion Research and TechnologiesDDC classification:
  • 622.3382
LOC classification:
  • TA462.T746 2017
Online resources:
Contents:
Front Cover -- Trends in Oil and Gas Corrosion Research and Technologies -- Related titles -- Trends in Oil and Gas Corrosion Research and Technologies -- Copyright -- Contents -- Biographies -- Preface -- I - Corrosion in the oil and gas upstream and mid-stream: introduction -- 1 - Cost of corrosion -- 1.1 Introduction -- 1.2 Methodologies to calculate the cost of corrosion -- 1.2.1 Uhlig method -- 1.2.2 Hoar method -- 1.2.3 Input-output model -- 1.2.4 Direct-indirect cost model -- 1.3 Review of published studies -- 1.3.1 United States (1949): the Uhlig report -- 1.3.2 West Germany (1969) -- 1.3.3 United Kingdom (1970): the Hoar report -- 1.3.4 Japan (1974) -- 1.3.5 United States (1975): the Battelle-NBS report -- 1.3.6 Australia (1982) -- 1.3.7 Kuwait (1978/1992) -- 1.3.8 Japan (1997) -- 1.3.9 United States (1998): the FHWA report -- 1.3.10 United States (1998): Electric Power Research Institute -- 1.3.11 Saudi Arabia (2006) -- 1.3.12 Australia (2010) -- 1.3.13 India (2011-2012) -- 1.3.14 United States (2016): IMPACT study -- 1.3.15 China (2016) -- 1.4 Current estimate of global cost of corrosion -- 1.5 Corrosion management financial tools -- 1.5.1 Current cost of corrosion -- 1.5.2 Cash flow -- 1.5.3 Corrosion control practices -- 1.5.3.1 Determine current practice -- 1.5.3.2 Elements of corrosion control practices -- 1.5.4 Present discount value of cash flow -- 1.5.5 Annual value of cash flow -- 1.5.6 Past trends of corrosion management costs and benefits -- 1.6 Cost saving through improvement of corrosion management -- 1.7 Incorporating corrosion management into corporate management systems -- 1.7.1 Corrosion management policy, strategy, and objectives -- 1.7.2 Enablers, controls, and measures -- 1.7.2.1 Organization -- 1.7.2.2 Contractors, suppliers, and vendors -- 1.7.2.3 Resources -- 1.7.2.4 Communication -- 1.7.2.5 Internal communication.
1.7.2.6 External communication -- 1.7.2.7 Risk management -- 1.7.2.8 Management of change -- 1.7.2.9 Training and competency -- 1.7.2.10 Lessons learned -- 1.7.2.11 Documentation -- 1.7.2.12 Assurance -- 1.7.2.13 Management review -- 1.7.2.14 Continuous improvement -- 1.8 Strategies for successful corrosion management -- References -- Further reading -- 2 - Petroleum fluids properties and production schemes: effect on corrosion -- 2.1 Introduction -- 2.1.1 Composition of produced fluids -- 2.1.2 Production and surface transportation of hydrocarbons -- 2.2 Corrosion in oil and gas production -- 2.2.1 Water chemistry and corrosion -- 2.2.2 Nature of oil and corrosion -- 2.2.3 Factors influencing corrosivity of oil -- 2.2.4 Water/oil ratio and corrosion -- 2.2.5 Sediments in crude oil -- 2.2.6 Influence of flow velocity -- 2.2.7 Role of interfacial phenomena -- 2.2.8 Microbiologically influenced corrosion -- 2.3 Summary -- References -- 3 - Corrosion management -- 3.1 Introduction -- 3.2 5-M methodology -- 3.2.1 Elements of 5-M methodology -- 3.2.1.1 Management -- 3.2.1.2 Modeling -- 3.2.1.3 Mitigation -- 3.2.1.4 Monitoring -- 3.2.1.5 Maintenance -- 3.2.2 Implementation of 5-M methodology -- 3.2.2.1 Management-context of corrosion control -- 3.2.2.2 Model-internal corrosion -- 3.2.2.3 Mitigation-internal corrosion -- 3.2.2.4 Monitoring-internal corrosion -- 3.2.2.5 Model-external corrosion -- 3.2.2.6 Mitigation-external corrosion -- 3.2.2.7 Monitoring-external corrosion -- 3.2.2.8 Maintenance -- 3.2.2.9 Management (continuous improvement) -- 3.2.3 Scoring key performance indicators -- 3.2.4 Case histories -- 3.2.4.1 Riser [4] -- 3.2.4.2 Oil production pipeline [5] -- 3.2.4.3 Oil transmission pipeline [6] -- 3.2.4.4 Oil and gas transmission pipeline network [7] -- 3.2.4.5 Gas transmission pipeline [8] -- 3.3 Risk-based inspection -- 3.4 Direct assessment.
3.5 Integrity operating windows or boundary of operation -- 3.6 Corrosion control document -- 3.7 Current status and future development -- References -- II - Corrosion in oil and gas production and transmission: current knowledge and challenges -- 4 - Downhole corrosion -- 4.1 Corrosion management of the downhole environment -- 4.2 Principle corrosive agents in production fluids -- 4.3 API RP14E -- 4.4 Environmental cracking -- 4.5 Corrosion inhibition -- 4.6 Comparison of costs for downhole corrosion prevention methods -- 4.7 Downhole internal coatings and nonmetallic materials -- 4.8 Control of external corrosion -- 4.9 Conclusions -- References -- 5 - Corrosion in onshore production and transmission sectors-current knowledge and challenges -- 5.1 Introduction -- 5.1.1 Onshore atmospheric corrosion -- 5.1.2 Onshore underground corrosion -- 5.1.3 Onshore oil pipelines-internal corrosion -- 5.1.3.1 Dead legs -- 5.1.3.2 Shut downs -- 5.1.3.3 Low flow rate -- 5.1.4 Onshore gas pipelines-internal corrosion -- 5.1.5 Onshore multiphase pipelines-internal corrosion -- 5.2 Control of pipeline corrosion -- 5.2.1 Materials selection -- 5.2.2 Corrosion control -- 5.2.3 Corrosion monitoring -- 5.2.4 Inspection -- 5.2.5 Corrosion assessment -- 5.3 Tanks and vessels -- 5.3.1 Storage and other tanks -- 5.3.2 Pressure vessels -- 5.3.3 Minor but important items -- 5.4 Downhole corrosion -- 5.4.1 Downhole material selection -- 5.4.2 Downhole corrosion control -- 5.5 Conclusions -- 5.6 Corrosion challenges in onshore sectors -- Reference -- III - Corrosion mechanisms: current knowledge, gaps and future research -- 6 - Sour corrosion -- 6.1 Introduction -- 6.2 Sour corrosion rates and electrochemistry -- 6.2.1 Electrochemical reactions -- 6.2.1.1 Anodic reactions-iron dissolution -- 6.2.1.2 Cathodic reactions-hydrogen reduction.
6.2.2 The effect of FeS layers on the corrosion rate -- 6.3 Sour corrosion products and surface layers -- 6.3.1 Amorphous iron sulfide -- 6.3.2 Mackinawite (FeS1−x) -- 6.3.3 Troilite (FeS) -- 6.3.4 Pyrrhotite (Fe1−xS) -- 6.3.5 Smythite (Fe7S8-Fe3S4) and greigite (Fe3S4) -- 6.3.6 Pyrite and marcasite (FeS2) -- 6.3.7 Types of iron sulfides formed during sour corrosion -- 6.4 Sour corrosion morphology -- 6.4.1 Pitting attacks -- 6.4.2 Edge and crevice attacks -- 6.5 Environmental factors affecting sour corrosion -- 6.5.1 Effect of temperature -- 6.5.2 Effect of H2S partial pressure -- 6.5.3 Flow velocity/wall shear stress -- 6.5.4 Dissolved salts/salinity -- 6.5.5 Alkalinity/pH -- 6.5.6 Organic acids -- 6.5.7 Gas hydrate inhibitors -- 6.6 Effects of elemental sulfur, polysulfides, and oxygen -- 6.7 The effect of steel microstructure -- 6.8 Summary of localized corrosion triggers -- 6.9 Gaps in current research and areas for future study -- Acknowledgments -- References -- 7 - CO2 corrosion of mild steel -- 7.1 Introduction -- 7.2 Water chemistry in CO2 corrosion -- 7.3 Electrochemistry of CO2 corrosion -- 7.3.1 Anodic reactions -- 7.3.2 Cathodic reactions -- 7.3.3 Charge transfer rate calculations -- 7.3.4 Effect of homogeneous reactions -- 7.3.5 Effect of mass transfer -- 7.4 Corrosion product layers -- 7.4.1 Iron carbide (Fe3C) -- 7.4.2 Iron carbonate (FeCO3) -- 7.4.3 Iron oxide (Fe3O4) -- 7.5 Additional aqueous species -- 7.5.1 Organic acids -- 7.5.2 Hydrogen sulfide -- 7.5.3 Chlorides -- 7.6 Multiphase flow effects -- 7.7 Effect of crude oil -- 7.8 Localized corrosion -- 7.9 Inhibition of CO2 corrosion -- 7.10 Some field experiences and key challenges -- References -- 8 - Microbiologically influenced corrosion (MIC) -- 8.1 Introduction -- 8.2 Microorganisms present in the oil and gas.
8.2.1 Microorganisms associated with microbiologically influenced corrosion -- 8.2.1.1 Methanogens -- 8.2.1.2 Sulfate-reducing bacteria -- 8.2.1.3 Iron- and manganese-oxidizing bacteria -- 8.2.1.4 Iron-reducing bacteria -- 8.2.1.5 Pseudomonas aeruginosa -- 8.2.1.6 Sulfur-oxidizing bacteria -- 8.2.1.7 Slime-former bacteria -- 8.2.1.8 Acid-producing bacteria -- 8.3 Classification of microorganisms -- 8.3.1 Classification based on oxygen demand -- 8.3.2 Classification of microorganisms based on energy and carbon requirement -- 8.3.3 Classification of microorganisms according to taxonomic hierarchy -- 8.4 Biofilms: why do microbes like to live in biofilms? -- 8.5 Microbiologically influenced corrosion mechanisms -- 8.5.1 Cathodic depolarization by hydrogenase -- 8.5.2 King and Miller mechanism -- 8.5.3 The anodic depolarization mechanism -- 8.5.4 Other mechanisms -- 8.6 Consequences of MIC in the gas and oil industry -- 8.6.1 Degradation and deterioration -- 8.7 Knowledge gaps and future research trends -- 8.7.1 Knowledge and acquaintance deficiency -- 8.7.2 Sampling procedures and evaluation methodologies -- 8.7.2.1 Microbiology: existence versus influence -- 8.7.2.2 Detection and monitoring -- 8.7.2.3 Procedures and standardization -- 8.7.2.4 Modeling and prediction -- 8.7.2.5 Future research significances -- 8.8 Conclusions -- References -- 9 - Pitting corrosion -- 9.1 Introduction -- 9.2 Environmental effects in pit formation -- 9.3 Electrochemical methods used to determine pitting potential -- 9.3.1 Evaluation of anodic polarization curves -- 9.3.2 Repassivation potential measurements -- 9.3.3 Pit depth -- 9.3.4 Critical pitting temperature and critical crevice temperature -- 9.4 Kinetics of pit growth -- 9.4.1 Pit growth in a bulk specimen as a function of time -- 9.4.2 Initiation stages of pit growth -- 9.5 Criteria for pit growth.
9.5.1 Critical pit stability.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Front Cover -- Trends in Oil and Gas Corrosion Research and Technologies -- Related titles -- Trends in Oil and Gas Corrosion Research and Technologies -- Copyright -- Contents -- Biographies -- Preface -- I - Corrosion in the oil and gas upstream and mid-stream: introduction -- 1 - Cost of corrosion -- 1.1 Introduction -- 1.2 Methodologies to calculate the cost of corrosion -- 1.2.1 Uhlig method -- 1.2.2 Hoar method -- 1.2.3 Input-output model -- 1.2.4 Direct-indirect cost model -- 1.3 Review of published studies -- 1.3.1 United States (1949): the Uhlig report -- 1.3.2 West Germany (1969) -- 1.3.3 United Kingdom (1970): the Hoar report -- 1.3.4 Japan (1974) -- 1.3.5 United States (1975): the Battelle-NBS report -- 1.3.6 Australia (1982) -- 1.3.7 Kuwait (1978/1992) -- 1.3.8 Japan (1997) -- 1.3.9 United States (1998): the FHWA report -- 1.3.10 United States (1998): Electric Power Research Institute -- 1.3.11 Saudi Arabia (2006) -- 1.3.12 Australia (2010) -- 1.3.13 India (2011-2012) -- 1.3.14 United States (2016): IMPACT study -- 1.3.15 China (2016) -- 1.4 Current estimate of global cost of corrosion -- 1.5 Corrosion management financial tools -- 1.5.1 Current cost of corrosion -- 1.5.2 Cash flow -- 1.5.3 Corrosion control practices -- 1.5.3.1 Determine current practice -- 1.5.3.2 Elements of corrosion control practices -- 1.5.4 Present discount value of cash flow -- 1.5.5 Annual value of cash flow -- 1.5.6 Past trends of corrosion management costs and benefits -- 1.6 Cost saving through improvement of corrosion management -- 1.7 Incorporating corrosion management into corporate management systems -- 1.7.1 Corrosion management policy, strategy, and objectives -- 1.7.2 Enablers, controls, and measures -- 1.7.2.1 Organization -- 1.7.2.2 Contractors, suppliers, and vendors -- 1.7.2.3 Resources -- 1.7.2.4 Communication -- 1.7.2.5 Internal communication.

1.7.2.6 External communication -- 1.7.2.7 Risk management -- 1.7.2.8 Management of change -- 1.7.2.9 Training and competency -- 1.7.2.10 Lessons learned -- 1.7.2.11 Documentation -- 1.7.2.12 Assurance -- 1.7.2.13 Management review -- 1.7.2.14 Continuous improvement -- 1.8 Strategies for successful corrosion management -- References -- Further reading -- 2 - Petroleum fluids properties and production schemes: effect on corrosion -- 2.1 Introduction -- 2.1.1 Composition of produced fluids -- 2.1.2 Production and surface transportation of hydrocarbons -- 2.2 Corrosion in oil and gas production -- 2.2.1 Water chemistry and corrosion -- 2.2.2 Nature of oil and corrosion -- 2.2.3 Factors influencing corrosivity of oil -- 2.2.4 Water/oil ratio and corrosion -- 2.2.5 Sediments in crude oil -- 2.2.6 Influence of flow velocity -- 2.2.7 Role of interfacial phenomena -- 2.2.8 Microbiologically influenced corrosion -- 2.3 Summary -- References -- 3 - Corrosion management -- 3.1 Introduction -- 3.2 5-M methodology -- 3.2.1 Elements of 5-M methodology -- 3.2.1.1 Management -- 3.2.1.2 Modeling -- 3.2.1.3 Mitigation -- 3.2.1.4 Monitoring -- 3.2.1.5 Maintenance -- 3.2.2 Implementation of 5-M methodology -- 3.2.2.1 Management-context of corrosion control -- 3.2.2.2 Model-internal corrosion -- 3.2.2.3 Mitigation-internal corrosion -- 3.2.2.4 Monitoring-internal corrosion -- 3.2.2.5 Model-external corrosion -- 3.2.2.6 Mitigation-external corrosion -- 3.2.2.7 Monitoring-external corrosion -- 3.2.2.8 Maintenance -- 3.2.2.9 Management (continuous improvement) -- 3.2.3 Scoring key performance indicators -- 3.2.4 Case histories -- 3.2.4.1 Riser [4] -- 3.2.4.2 Oil production pipeline [5] -- 3.2.4.3 Oil transmission pipeline [6] -- 3.2.4.4 Oil and gas transmission pipeline network [7] -- 3.2.4.5 Gas transmission pipeline [8] -- 3.3 Risk-based inspection -- 3.4 Direct assessment.

3.5 Integrity operating windows or boundary of operation -- 3.6 Corrosion control document -- 3.7 Current status and future development -- References -- II - Corrosion in oil and gas production and transmission: current knowledge and challenges -- 4 - Downhole corrosion -- 4.1 Corrosion management of the downhole environment -- 4.2 Principle corrosive agents in production fluids -- 4.3 API RP14E -- 4.4 Environmental cracking -- 4.5 Corrosion inhibition -- 4.6 Comparison of costs for downhole corrosion prevention methods -- 4.7 Downhole internal coatings and nonmetallic materials -- 4.8 Control of external corrosion -- 4.9 Conclusions -- References -- 5 - Corrosion in onshore production and transmission sectors-current knowledge and challenges -- 5.1 Introduction -- 5.1.1 Onshore atmospheric corrosion -- 5.1.2 Onshore underground corrosion -- 5.1.3 Onshore oil pipelines-internal corrosion -- 5.1.3.1 Dead legs -- 5.1.3.2 Shut downs -- 5.1.3.3 Low flow rate -- 5.1.4 Onshore gas pipelines-internal corrosion -- 5.1.5 Onshore multiphase pipelines-internal corrosion -- 5.2 Control of pipeline corrosion -- 5.2.1 Materials selection -- 5.2.2 Corrosion control -- 5.2.3 Corrosion monitoring -- 5.2.4 Inspection -- 5.2.5 Corrosion assessment -- 5.3 Tanks and vessels -- 5.3.1 Storage and other tanks -- 5.3.2 Pressure vessels -- 5.3.3 Minor but important items -- 5.4 Downhole corrosion -- 5.4.1 Downhole material selection -- 5.4.2 Downhole corrosion control -- 5.5 Conclusions -- 5.6 Corrosion challenges in onshore sectors -- Reference -- III - Corrosion mechanisms: current knowledge, gaps and future research -- 6 - Sour corrosion -- 6.1 Introduction -- 6.2 Sour corrosion rates and electrochemistry -- 6.2.1 Electrochemical reactions -- 6.2.1.1 Anodic reactions-iron dissolution -- 6.2.1.2 Cathodic reactions-hydrogen reduction.

6.2.2 The effect of FeS layers on the corrosion rate -- 6.3 Sour corrosion products and surface layers -- 6.3.1 Amorphous iron sulfide -- 6.3.2 Mackinawite (FeS1−x) -- 6.3.3 Troilite (FeS) -- 6.3.4 Pyrrhotite (Fe1−xS) -- 6.3.5 Smythite (Fe7S8-Fe3S4) and greigite (Fe3S4) -- 6.3.6 Pyrite and marcasite (FeS2) -- 6.3.7 Types of iron sulfides formed during sour corrosion -- 6.4 Sour corrosion morphology -- 6.4.1 Pitting attacks -- 6.4.2 Edge and crevice attacks -- 6.5 Environmental factors affecting sour corrosion -- 6.5.1 Effect of temperature -- 6.5.2 Effect of H2S partial pressure -- 6.5.3 Flow velocity/wall shear stress -- 6.5.4 Dissolved salts/salinity -- 6.5.5 Alkalinity/pH -- 6.5.6 Organic acids -- 6.5.7 Gas hydrate inhibitors -- 6.6 Effects of elemental sulfur, polysulfides, and oxygen -- 6.7 The effect of steel microstructure -- 6.8 Summary of localized corrosion triggers -- 6.9 Gaps in current research and areas for future study -- Acknowledgments -- References -- 7 - CO2 corrosion of mild steel -- 7.1 Introduction -- 7.2 Water chemistry in CO2 corrosion -- 7.3 Electrochemistry of CO2 corrosion -- 7.3.1 Anodic reactions -- 7.3.2 Cathodic reactions -- 7.3.3 Charge transfer rate calculations -- 7.3.4 Effect of homogeneous reactions -- 7.3.5 Effect of mass transfer -- 7.4 Corrosion product layers -- 7.4.1 Iron carbide (Fe3C) -- 7.4.2 Iron carbonate (FeCO3) -- 7.4.3 Iron oxide (Fe3O4) -- 7.5 Additional aqueous species -- 7.5.1 Organic acids -- 7.5.2 Hydrogen sulfide -- 7.5.3 Chlorides -- 7.6 Multiphase flow effects -- 7.7 Effect of crude oil -- 7.8 Localized corrosion -- 7.9 Inhibition of CO2 corrosion -- 7.10 Some field experiences and key challenges -- References -- 8 - Microbiologically influenced corrosion (MIC) -- 8.1 Introduction -- 8.2 Microorganisms present in the oil and gas.

8.2.1 Microorganisms associated with microbiologically influenced corrosion -- 8.2.1.1 Methanogens -- 8.2.1.2 Sulfate-reducing bacteria -- 8.2.1.3 Iron- and manganese-oxidizing bacteria -- 8.2.1.4 Iron-reducing bacteria -- 8.2.1.5 Pseudomonas aeruginosa -- 8.2.1.6 Sulfur-oxidizing bacteria -- 8.2.1.7 Slime-former bacteria -- 8.2.1.8 Acid-producing bacteria -- 8.3 Classification of microorganisms -- 8.3.1 Classification based on oxygen demand -- 8.3.2 Classification of microorganisms based on energy and carbon requirement -- 8.3.3 Classification of microorganisms according to taxonomic hierarchy -- 8.4 Biofilms: why do microbes like to live in biofilms? -- 8.5 Microbiologically influenced corrosion mechanisms -- 8.5.1 Cathodic depolarization by hydrogenase -- 8.5.2 King and Miller mechanism -- 8.5.3 The anodic depolarization mechanism -- 8.5.4 Other mechanisms -- 8.6 Consequences of MIC in the gas and oil industry -- 8.6.1 Degradation and deterioration -- 8.7 Knowledge gaps and future research trends -- 8.7.1 Knowledge and acquaintance deficiency -- 8.7.2 Sampling procedures and evaluation methodologies -- 8.7.2.1 Microbiology: existence versus influence -- 8.7.2.2 Detection and monitoring -- 8.7.2.3 Procedures and standardization -- 8.7.2.4 Modeling and prediction -- 8.7.2.5 Future research significances -- 8.8 Conclusions -- References -- 9 - Pitting corrosion -- 9.1 Introduction -- 9.2 Environmental effects in pit formation -- 9.3 Electrochemical methods used to determine pitting potential -- 9.3.1 Evaluation of anodic polarization curves -- 9.3.2 Repassivation potential measurements -- 9.3.3 Pit depth -- 9.3.4 Critical pitting temperature and critical crevice temperature -- 9.4 Kinetics of pit growth -- 9.4.1 Pit growth in a bulk specimen as a function of time -- 9.4.2 Initiation stages of pit growth -- 9.5 Criteria for pit growth.

9.5.1 Critical pit stability.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.