Synthesis and Applications of Nanocarbons.
Material type:
- text
- computer
- online resource
- 9781119429395
- TA418.9.N35 .S968 2021
Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Series Preface -- Preface -- Chapter 1 Properties of Carbon Bulk Materials: Graphite and Diamond -- 1.1 Introduction -- 1.2 Graphite -- 1.2.1 History -- 1.2.2 sp2 Hybridization -- 1.2.3 Structure of Graphite -- 1.2.3.1 Hexagonal Graphite -- 1.2.3.2 Rhombohedral Graphite -- 1.2.3.3 Polycrystalline Graphite -- 1.2.3.4 Crystallite Imperfections -- 1.2.4 Natural and Synthetic Graphite -- 1.2.4.1 Natural Graphite -- 1.2.4.2 Synthetic Graphite -- 1.3 Diamond -- 1.3.1 History -- 1.3.2 sp3 Hybridization -- 1.3.3 Structure of Diamond -- 1.3.3.1 Crystal Forms of Diamond -- 1.3.4 Impurities in Diamond -- 1.3.4.1 Lattice Impurities -- 1.3.4.2 Inclusions -- 1.3.5 Natural and Synthetic Diamond -- 1.3.5.1 Natural Diamond -- 1.3.5.2 Synthetic Diamond -- 1.4 Characterization of Graphite and Diamond -- 1.4.1 Raman Spectroscopy -- 1.4.2 X‐ray Diffraction -- 1.4.3 Electron Energy Loss Spectroscopy -- 1.4.4 X‐ray Photoelectron Spectroscopy -- 1.4.5 Scanning Electron Microscopy -- 1.4.6 Transmission Electron Microscopy -- 1.5 Properties of Graphite and Diamond -- 1.6 Applications of Graphite and Diamond -- 1.6.1 Graphite -- 1.6.2 Diamond -- References -- Chapter 2 Endohedral and Exohedral Single‐Layered Fullerenes -- 2.1 Introduction -- 2.2 Structure and Physicochemical Properties of "Empty" Single‐Layered Fullerenes -- 2.3 Structure and Physicochemical Properties of Endohedral Fullerenes -- 2.4 Functionalization and Application of Single‐Layered Fullerenes -- 2.4.1 Functionalization and Application of Exohedral Fullerenes -- 2.4.2 Functionalization and Application of Endohedral Metallofullerenes -- 2.5 Summary -- Acknowledgments -- References -- Chapter 3 Spherical Onion‐Like Carbons -- 3.1 Introduction -- 3.2 Structure of Onion‐Like Carbons and Their Physicochemical Properties.
3.3 Covalent and Noncovalent Functionalization of OLCs -- 3.4 Doping of OLCs by Heteroatoms -- 3.5 Applications of OLCs -- 3.5.1 Bioimaging -- 3.5.2 (Bio)Sensors -- 3.5.3 Energy Storage Devices -- 3.5.4 Solar Cells -- 3.5.5 Electronic and Photonic Applications -- 3.5.6 Sorbents -- 3.5.7 Catalysis and Electrocatalysis -- 3.5.8 Tribology -- 3.6 Summary -- Acknowledgments -- References -- Chapter 4 Carbon Nanotubes: Synthesis, Properties, and New Developments in Research -- 4.1 Introduction -- 4.2 Atomic Structure of Carbon Nanotubes -- 4.3 Properties of Carbon Nanotubes -- 4.3.1 Electronic Properties -- 4.3.2 Mechanical Properties -- 4.3.3 Thermal Properties -- 4.4 Synthesis of Carbon Nanotubes -- 4.4.1 Arc‐Discharge -- 4.4.2 Laser Ablation -- 4.4.3 Molten Salt Route/Electrolytic Process -- 4.4.4 Chemical Vapor Deposition -- 4.5 Postsynthesis Treatments of Carbon Nanotubes -- 4.5.1 Purification -- 4.5.2 Separation of Metallic and Semiconducting SWCNTs -- 4.5.3 Functionalization -- 4.6 New Developments in Carbon Nanotube Research: Toward Controllable Properties of Nanotubes -- 4.6.1 Chirality Selective Synthesis of SWCNTs -- 4.6.2 Chirality Selective Separation of SWCNTs -- 4.6.3 Substitutional Doping of SWCNTs -- 4.6.4 Exohedral Modification of CNTs: Nanotube Hybrids -- 4.6.5 Filling of SWCNT Interior Channels -- 4.7 Conclusions and Outlook -- Acknowledgments -- References -- Chapter 5 CNT Fiber‐Based Hybrids: Synthesis, Characterization, and Applications in Energy Management -- 5.1 Introduction: What are CNT Fibers and Why Do they Form Interesting Hybrids and Composites? -- 5.1.1 CNT Fiber Structure and Properties -- 5.1.2 Design Principles in CNT Fiber Hybrids -- 5.2 Hybridization with Metal Oxides -- 5.2.1 Surface Chemistry and Functionalization -- 5.2.2 Examples of Common Architectures: Layered, Particulates, Conformal.
5.2.2.1 Particulate Systems -- 5.2.2.2 Layered Systems -- 5.2.2.3 Conformal CNT Fiber Hybrids -- 5.2.3 Hybrid Structure and Interfacial Characterization -- 5.2.3.1 Determination of Mass Fraction -- 5.2.3.2 Wetting and Interaction with Solvents -- 5.2.3.3 Specific Surface Area and Pore Size -- 5.2.4 Solid‐State Transport Characterization of Layered Hybrids -- 5.2.4.1 Junction Characterization in Layered Hybrids -- 5.2.5 Interfacial Studies by Electrochemical Impedance Spectroscopy Methods -- 5.2.6 Advanced Interfacial Studies in ALD‐Hybrid Test Systems -- 5.2.6.1 Residual Strain -- 5.2.6.2 Evidence of an Interfacial Ti O C Bond -- 5.2.6.3 Electronic Structure of the Ti O C Interface -- 5.3 EDLC Introducing Pseudocapacitive Reactions -- 5.4 Capacitive Deionization -- 5.5 Battery Electrodes -- 5.6 Conclusions and Perspective -- References -- Chapter 6 Advanced Materials Designed with Nanodiamonds: Synthesis and Applications -- 6.1 Introduction -- 6.2 Synthesis of Isolated Objects from ND -- 6.2.1 ND Grafted with Molecules -- 6.2.1.1 Electrostatic Grafting -- 6.2.1.2 Chemical Grafting -- 6.2.2 Nanodiamonds as Templates -- 6.2.2.1 Decoration by Atoms or Clusters -- 6.2.2.2 Core Shells with Diamond Core -- 6.3 Decoration of Particles by ND, Core Shells with Diamond Shell -- 6.3.1 Nanodiamonds to Decorate or to Graft to NP -- 6.3.1.1 Emulsion -- 6.3.1.2 Decoration of Nanoparticles with ND -- 6.3.1.3 Decoration of Carbon Nanostructures by ND -- 6.3.2 Silica/Diamond Core Shells -- 6.4 Conclusion and Perspectives -- References -- Chapter 7 Chemical Functionalization of Nanodiamond for Nanobiomedicine -- 7.1 Introduction -- 7.2 ND for Fluorescent Cell Labeling -- 7.2.1 Fluorophore‐Immobilized ND -- 7.2.1.1 Synthesis -- 7.2.1.2 Cell Labeling -- 7.2.2 ND with Intrinsic Fluorescence -- 7.2.2.1 Synthesis -- 7.2.2.2 Cell Labeling -- 7.3 ND for MRI -- 7.3.1 Synthesis.
7.3.2 MRI Relaxivity -- 7.4 ND for Gene Delivery -- 7.4.1 Synthesis -- 7.4.2 Gene Delivery -- 7.5 ND for Drug Delivery -- 7.5.1 Synthesis -- 7.5.2 Drug Delivery -- 7.6 Concluding Remarks -- Acknowledgments -- References -- Chapter 8 Nanocarbon Aerogels and Aerographite -- 8.1 Introduction -- 8.2 Fabrication -- 8.2.1 Non‐template Based and Template Based Methods -- 8.2.1.1 Non‐template Based Synthesis -- 8.2.1.2 Template Based Synthesis -- 8.2.2 Template Based Synthesis of Aerographite and Globugraphite -- 8.2.2.1 Fabrication of Porous Ceramic Templates -- 8.2.2.2 CVD Synthesis -- 8.3 Morphology -- 8.3.1 Tetrapodal Networks -- 8.3.2 Globular Foam Structures with Hierarchical Pore Morphology -- 8.3.3 Reticular Morphology -- 8.3.4 Carbon Hybrids -- 8.4 Properties -- 8.4.1 Density -- 8.4.2 Electrical and Electrochemical Properties -- 8.4.2.1 Electrical Conductivity -- 8.4.2.2 Electrochemical Performance -- 8.5 Modifications -- 8.5.1 Metal and Metal Oxide Hybrids -- 8.5.2 Thermal Treatment (Annealing) -- 8.6 Conclusion -- 8.6.1 Summary -- 8.6.2 Outlook -- References -- Chapter 9 Optoelectronic Properties of Nanocarbons and Nanocarbon Films -- 9.1 Introduction -- 9.2 Nanocarbons -- 9.2.1 Graphene and Derivatives -- 9.2.1.1 Pristine Graphene via Micromechanical Exfoliation -- 9.2.1.2 Reduced Graphene/Graphite Oxide -- 9.2.1.3 Graphene from Chemical Vapor Deposition -- 9.2.2 Carbon Nanotubes -- 9.2.2.1 SWCNT Chirality -- 9.3 Fundamentals of Optical and Electronic Properties of Nanocarbons -- 9.3.1 Electronic Properties -- 9.3.1.1 Graphene -- 9.3.1.2 Carbon Nanotubes -- 9.3.2 Optical Properties -- 9.3.2.1 Graphene -- 9.3.2.2 Carbon Nanotubes -- 9.4 Optoelectronic Properties of Nanocarbon Films -- 9.4.1 The Figure of Merit (FOM) of Optoelectronic Devices -- 9.4.2 Techniques to Maximize FOM -- 9.5 Summary and Outlook -- References -- Index -- EULA.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.