Human Subject Research for Engineers : A Practical Guide.
Material type:
- text
- computer
- online resource
- 9783319569642
- 005.437
- TA174
Intro -- Preface -- Who This Book Is For -- Why This Book Is Important -- Who This Book Is Not For -- Scripts -- References -- Contents -- 1 Scientific Method, Human Research Ethics, and Biosafety/Biosecurity -- Abstract -- 1.1 How Is Human Subject Research Different from Engineering? -- 1.2 Hypothesis -- 1.3 Is a Hypothesis Always Needed? -- 1.4 Ethics -- 1.4.1 Informed Consent -- 1.4.2 Ethically Challenging Research Aspects -- 1.4.3 Big Data Research -- 1.4.4 Is Ethically Challenging Research Impossible? -- 1.4.5 Isn't This Just Excessive Paperwork? -- 1.5 Biosafety and Biosecurity -- 1.5.1 Biosafety -- 1.5.2 Biosecurity -- References -- 2 Experimental Design -- Abstract -- 2.1 Experiments and Quasi-experiments -- 2.2 Between-Subjects Design -- 2.2.1 Control Groups -- 2.2.2 Participant Assignment to Groups -- 2.3 Within-Subject Design -- 2.4 Choosing Between-Subjects or Within-Subject Design: More Than just a Matter of Statistical Power -- 2.5 Validity Threats in Experiments -- 2.5.1 Demand Characteristics -- 2.5.2 Experimenter Expectancy Effect -- 2.6 Quasi-experiments -- 2.7 Validity Threat in Quasi-experiments: Causation Versus Correlation -- 2.8 Validity Threats in Experiments and Quasi-experiments -- 2.8.1 Sample Representativeness -- 2.8.2 Attrition -- 2.9 Measurements and Measures -- 2.9.1 Statistical Reliability -- 2.9.2 Self-reported Measures (Questionnaires) -- 2.10 Finally, Some Tips Before Starting the Experiment -- References -- 3 Statistics -- Abstract -- 3.1 What This Chapter Does (Not) Cover -- 3.2 Descriptive Statistics -- 3.2.1 Central Tendency and Variability -- 3.2.2 Effect Sizes -- 3.2.2.1 Cohen's d -- 3.2.2.2 Pearson Product-Moment Correlation Coefficient -- 3.2.2.3 Point-Biserial Correlation -- 3.2.2.4 Spearman Rank-Order Correlation -- 3.2.2.5 Risk Ratios and Odds Ratios -- 3.2.3 What is a Strong Effect?.
3.2.4 Why Tables Are Not Enough -- 3.3 Inferential Statistics -- 3.3.1 Sample Versus Population -- 3.3.2 Hypothesis Testing -- 3.3.3 Independent-Samples t Test -- 3.3.4 Paired-Samples t Test -- 3.3.5 One-Tailed Versus Two-Tailed Tests -- 3.3.6 Alternatives to the t Test -- 3.3.7 Multivariate Statistics -- 3.4 Pitfalls of Null Hypothesis Significance Testing -- 3.4.1 Most Published Research Findings Are False -- 3.4.2 Bias -- 3.4.3 Recommendations in Order to Maximize the Replicability of a Work -- 3.5 Final Note -- References -- 4 Publishing -- Abstract -- 4.1 What Is Publishing and Why Is It Important? -- 4.2 What Is a Research Paper? -- 4.2.1 Structure of a Research Paper -- 4.2.1.1 Title -- 4.2.1.2 Authorship -- 4.2.1.3 Affiliations -- 4.2.1.4 Abstract -- 4.2.1.5 Main Text -- 4.2.1.6 Acknowledgments, Disclosures, and Biographies -- 4.2.1.7 References -- 4.2.1.8 Supplementary Material -- 4.2.1.9 Figures and Tables -- 4.2.2 Writing Style -- 4.2.3 Preventing Plagiarism -- 4.2.4 Copyright -- 4.2.5 Fraud -- 4.3 Publication Bias -- 4.4 The Process from Submission to Publishing -- 4.5 Open Access Journals -- 4.6 Scientometrics -- 4.6.1 Impact Factor -- 4.6.2 h-Index -- 4.6.3 Altmetrics -- References -- MATLAB Scripts.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.