Immobilised Biocatalysts for Bioremediation of Groundwater and Wastewater.
Material type:
- text
- computer
- online resource
- 9781780406466
- 628.35
- TD755 -- .H634 2015eb
Cover -- Copyright -- Contents -- List of figures -- List of tables -- List of contributors -- Preface -- Acknowledgement -- Abbreviations -- Chapter 1: Introduction -- 1.1 Pollutants in the Aquatic Environment -- 1.1.1 Types, occurrence and fate -- 1.1.2 Regulatory frameworks -- 1.1.2.1 EU level legislation -- 1.1.2.2 National legislation -- 1.2 Environmental Biotechnology Options -- 1.2.1 Challenges for the implementation of bioaugmentation -- 1.2.2 Challenges for the use of enzymes -- 1.2.3 Immobilization of whole cells and enzymes as a solution of choice to circumvent bioremediation difficulties -- 1.3 Recent Research - The MINOTAURUS Project -- 1.3.1 Scope and ambition -- 1.3.2 Approach -- 1.4 About this Book -- 1.5 References -- Chapter 2: Analytical and monitoring methods -- 2.1 Chemical Methods for the Analysis of Target Pollutants -- 2.1.1 Endocrine disrupting compounds and pharmaceuticals -- 2.1.1.1 Liquid chromatography for the analysis of polar pharmaceuticals -- 2.1.1.2 Analysis of BPA with GC-MS -- 2.1.1.3 Simulateneous measurement of BPA, CBZ, DF, EE2, NP, SMX, and TCS -- 2.1.2 Methyl tert-butyl ether, tert-butyl alcohol and chlorinated aliphatic hydrocarbons -- 2.2 Isotopic Methods -- 2.2.1 14C-Radioanalytics -- 2.2.1.1 Background and potential -- 2.2.1.2 Application in the MINOTAURUS project -- 2.2.2 Compound specific stable isotope analysis (CSIA) -- 2.2.2.1 Exemplified CSIA application in a technical processes -- 2.3 Biocatalyst Monitoring -- 2.3.1 Monitoring tools for microorganisms -- 2.3.1.1 Fluorescence in situ hybridization (FISH) -- 2.3.1.2 Quantitative polymerases chain reaction (qPCR) -- 2.3.1.3 Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) -- 2.3.1.4 Next generation sequencing -- 2.3.1.5 Stable isotope probing (SIP) -- 2.3.1.6 BACTRAPs -- 2.3.2 Monitoring tools for enzymes.
2.3.2.1 Colorimetric assays for measuring laccase activity -- 2.3.2.2 Determining oxygen consumption rate (OCR) -- 2.3.2.3 Determining enzyme activity via co-factor oxidation in the UV-range -- 2.3.2.4 Assessment of enzyme kinetics with target pollutants using chemical analysis -- 2.4 Ecotoxicity Monitoring -- 2.4.1 Batteries of ecotoxicity tests -- 2.4.2 Ecotoxicity tests used within the MINOTAURUS project -- 2.5 References -- Chapter 3: Immobilization techniques for biocatalysts -- 3.1 Introduction -- 3.2 Immobilization of Biomass -- 3.2.1 Bioaugmented membrane bioreactor (MBR) -- 3.2.1.1 Immobilization on carrier material -- 3.2.1.2 Encapsulation in alginate beads -- 3.2.2 Bioaugmented packed bed reactor (PBR) -- 3.2.2.1 Biomass immobilization for the development of packed bed reactors treating chlorinated aliphatic hydrocarbons (CAH) -- 3.2.3 Microorganisms on electrically conductive carriers -- 3.2.3.1 Tailored electrically-conductive carrier materials -- 3.3 Immobilization of enzymes -- 3.3.1 Bio-inspired titanification -- 3.3.1.1 Principle -- 3.3.1.2 Biocatalyst performance -- 3.3.2 Enzyme conjugated nanoparticles -- 3.3.2.1 Principle -- 3.3.2.2 Biocatalyst performance -- 3.4 References -- Chapter 4: Bioaugmented membrane bioreactor technology -- 4.1 State of the Art -- 4.2 Process Description -- 4.2.1 Pilot-scale set-up -- 4.2.2 Bioaugmentation -- 4.2.3 Sampling and analytical methods -- 4.3 Basic Design Principle -- 4.4 Operational Modes, Experiences, Results -- 4.4.1 General operational experience, removal of macropollutants -- 4.4.2 Removal of BPA -- 4.4.3 Biomass characterization by real time PCR -- 4.5 Unresolved Issues -- 4.6 Potential Application Scenarios -- 4.7 References -- Chapter 5: Enzyme reactors -- 5.1 State of the Art -- 5.2 Enzymatic Membrane Reactor.
5.2.1 Laboratory application of laccase-conjugated nanoparticles for micropollutants removal -- 5.2.2 Application of GTL-fsNPs in advanced wastewater treatment -- 5.2.2.1 Reactor concept -- 5.2.2.2 Laboratory bench-scale reactor -- 5.2.2.3 Field pilot-scale plant -- 5.2.3 Operational modes, results, experience -- 5.2.3.1 Laboratory bench-scale experiments -- 5.2.3.2 Results of pilot-scale experiments -- 5.2.4 Unresolved issues -- 5.2.5 Potential application scenarios -- 5.3 Magnetic Retention Reactor -- 5.3.1 Reactor design and process description -- 5.3.2 Preliminary micropollutant removal tests in batch -- 5.3.3 Continuous operation of the reactor with magnetic retention -- 5.4 References -- Chapter 6: Rhizodegradation in constructed wetlands -- 6.1 State of The Art and Process Description -- 6.2 Basic Design Principles -- 6.2.1 Vegetation -- 6.2.2 Design considerations -- 6.2.2.1 BOD removal -- 6.2.2.2 Total suspended solids (TSS) removal -- 6.2.2.3 Nitrogen removal -- 6.2.2.4 Phosphorus removal -- 6.2.2.5 Pathogens removal -- 6.2.3 Hydrological balance of CWs -- 6.2.3.1 Evapotranspiration -- 6.2.4 General design parameters -- 6.2.5 Construction details -- 6.2.6 General design for contaminants removal -- 6.2.7 Hydraulic design of horizontal subsurface flow systems -- 6.3 Expected Performance and Field Experience -- 6.3.1 The MINOTAURUS project experience -- 6.3.2 Contribution of endophytic bacteria in rhizodegradation -- 6.4 Unresolved Issues -- 6.5 Potential Application Scenarios -- 6.6 References -- Chapter 7: Packed bed reactors (PBR) to treat chlorinated aliphatic hydrocarbons via aerobic cometabolism as pump & -- treat technology -- 7.1 State of the Art -- 7.2 Process Descripition -- 7.2.1 Aerobic cometabolic biodegradation of chlorinated aliphatic hydrocarbons -- 7.2.2 Pulsed feed of oxygen and growth substrate.
7.3 Basic Design Principle -- 7.3.1 Selection of the growth substrate and development of a suitable suspended-cell microbial consortium -- 7.3.2 Selection of the biofilm carrier -- 7.3.3 Kinetic study to characterize the target CAHs biodegradation by the attached-cell consortium -- 7.3.4 Fluid-dynamic characterization of a packing of the selected biofilm carrier -- 7.3.5 Analysis of the process robustness and reliability -- 7.3.6 Sizing of the PBR and preliminary design of the schedule of pulsed oxygen/substrate supply -- 7.4 Operational Modes, Experiences, Results -- 7.4.1 Growth substrate selection and consortium characterization -- 7.4.2 Biofilm carrier selection -- 7.4.3 Kinetic study of TCE biodegradation by the selected attached-cell consortium -- 7.4.4 Fluid-dynamic characterization of the selected biofilm carrier -- 7.4.5 Analysis of the process robustness and reliability -- 7.4.6 Application of the PBR sizing procedure and operation of a 31-L pilot-scale PBR -- 7.5 Unresolved Issues (from Pilot to Field) -- 7.6 Potential Application Scenarios -- 7.7 References -- Chapter 8: Packed bed reactors (pump & -- treat technologies) to treat MTBE/TBA contaminated groundwater -- 8.1 State of the Art -- 8.2 Process Descripition -- 8.3 Basic Design Principle -- 8.3.1 Working area of the M-consortium -- 8.3.2 Retention of biomass in the bioreactor -- 8.3.3 Reliability of the inoculated bioreactor -- 8.3.4 Robustness of the inoculated bioreactor -- 8.4 Operational Modes, Experiences, Results -- 8.4.1 Evaluation of carrier materials -- 8.4.1.1 Compatibility test -- 8.4.1.2 Retention of biomass -- 8.4.1.3 Fluidization -- 8.4.1.4 Conclusions -- 8.4.2 Degradation performance in bench-scale 7 L bioreactor systems -- 8.4.2.1 Recirculation mode with spiked influent -- 8.4.2.2 Continuous mode with real groundwater.
8.4.2.3 Quantification and characterization of biomass -- 8.4.3 Pilot-scale bioreactor tests -- 8.4.3.1 Test approach -- 8.4.3.2 Test results -- 8.4.3.3 Conclusions -- 8.5 Unresolved Issues (from Pilot to Field) -- 8.6 Potential Application Scenarios -- 8.7 References -- Chapter 9: Bioelectrochemical reactor (in situ remediation) -- 9.1 State of the Art -- 9.2 Process Description -- 9.3 Basic Design Principle -- 9.4 Operational Modes, Experiences, Results -- 9.4.1 Cathodic reductive dechlorination of TCE -- 9.4.1.1 Influence of the cathode potential on the rate and yield of the reductive dechlorination process -- 9.4.1.2 Microbiological characterization of the biocathode -- 9.4.2 Anodic removal of chlorinated intermediates of cathodic dechlorination -- 9.4.2.1 Assessment of the potential for anaerobic electrochemical oxidation of cis-DCE and ethene -- 9.4.2.2 Microbial oxidation of cis-DCE and ethene sustained by electrolytic oxygen generation -- 9.4.3 Overall performance of the sequential cathodic/anodic bioelectrochemical remediation process -- 9.5 Unresolved Issues -- 9.6 Potential Application Scenarios -- 9.7 References.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.