ORPP logo
Image from Google Jackets

Fundamentals of Silicon Carbide Technology : Growth, Characterization, Devices and Applications.

By: Contributor(s): Material type: TextTextSeries: IEEE Press SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2014Copyright date: ©2014Edition: 1st edDescription: 1 online resource (555 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118313541
Subject(s): Genre/Form: Additional physical formats: Print version:: Fundamentals of Silicon Carbide TechnologyLOC classification:
  • TK7871.15.S56 -- .K56 2014eb
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Chapter 1 Introduction -- 1.1 Progress in Electronics -- 1.2 Features and Brief History of Silicon Carbide -- 1.2.1 Early History -- 1.2.2 Innovations in SiC Crystal Growth -- 1.2.3 Promise and Demonstration of SiC Power Devices -- 1.3 Outline of This Book -- References -- Chapter 2 Physical Properties of Silicon Carbide -- 2.1 Crystal Structure -- 2.2 Electrical and Optical Properties -- 2.2.1 Band Structure -- 2.2.2 Optical Absorption Coefficient and Refractive Index -- 2.2.3 Impurity Doping and Carrier Density -- 2.2.4 Mobility -- 2.2.5 Drift Velocity -- 2.2.6 Breakdown Electric Field Strength -- 2.3 Thermal and Mechanical Properties -- 2.3.1 Thermal Conductivity -- 2.3.2 Phonons -- 2.3.3 Hardness and Mechanical Properties -- 2.4 Summary -- References -- Chapter 3 Bulk Growth of Silicon Carbide -- 3.1 Sublimation Growth -- 3.1.1 Phase Diagram of Si-C -- 3.1.2 Basic Phenomena Occurring during the Sublimation (Physical Vapor Transport) Method -- 3.1.3 Modeling and Simulation -- 3.2 Polytype Control in Sublimation Growth -- 3.3 Defect Evolution and Reduction in Sublimation Growth -- 3.3.1 Stacking Faults -- 3.3.2 Micropipe Defects -- 3.3.3 Threading Screw Dislocation -- 3.3.4 Threading Edge Dislocation and Basal Plane Dislocation -- 3.3.5 Defect Reduction -- 3.4 Doping Control in Sublimation Growth -- 3.4.1 Impurity Incorporation -- 3.4.2 n-Type Doping -- 3.4.3 p-Type Doping -- 3.4.4 Semi-Insulating -- 3.5 High-Temperature Chemical Vapor Deposition -- 3.6 Solution Growth -- 3.7 3C-SiC Wafers Grown by Chemical Vapor Deposition -- 3.8 Wafering and Polishing -- 3.9 Summary -- References -- Chapter 4 Epitaxial Growth of Silicon Carbide -- 4.1 Fundamentals of SiC Homoepitaxy -- 4.1.1 Polytype Replication in SiC Epitaxy -- 4.1.2 Theoretical Model of SiC Homoepitaxy.
4.1.3 Growth Rate and Modeling -- 4.1.4 Surface Morphology and Step Dynamics -- 4.1.5 Reactor Design for SiC Epitaxy -- 4.2 Doping Control in SiC CVD -- 4.2.1 Background Doping -- 4.2.2 n-Type Doping -- 4.2.3 p-Type Doping -- 4.3 Defects in SiC Epitaxial Layers -- 4.3.1 Extended Defects -- 4.3.2 Deep Levels -- 4.4 Fast Homoepitaxy of SiC -- 4.5 SiC Homoepitaxy on Non-standard Planes -- 4.5.1 SiC Homoepitaxy on Nearly On-Axis {0001} -- 4.5.2 SiC Homoepitaxy on Non-basal Planes -- 4.5.3 Embedded Homoepitaxy of SiC -- 4.6 SiC Homoepitaxy by Other Techniques -- 4.7 Heteroepitaxy of 3C-SiC -- 4.7.1 Heteroepitaxial Growth of 3C-SiC on Si -- 4.7.2 Heteroepitaxial Growth of 3C-SiC on Hexagonal SiC -- 4.8 Summary -- References -- Chapter 5 Characterization Techniques and Defects in Silicon Carbide -- 5.1 Characterization Techniques -- 5.1.1 Photoluminescence -- 5.1.2 Raman Scattering -- 5.1.3 Hall Effect and Capacitance-Voltage Measurements -- 5.1.4 Carrier Lifetime Measurements -- 5.1.5 Detection of Extended Defects -- 5.1.6 Detection of Point Defects -- 5.2 Extended Defects in SiC -- 5.2.1 Major Extended Defects in SiC -- 5.2.2 Bipolar Degradation -- 5.2.3 Effects of Extended Defects on SiC Device Performance -- 5.3 Point Defects in SiC -- 5.3.1 Major Deep Levels in SiC -- 5.3.2 Carrier Lifetime Killer -- 5.4 Summary -- References -- Chapter 6 Device Processing of Silicon Carbide -- 6.1 Ion Implantation -- 6.1.1 Selective Doping Techniques -- 6.1.2 Formation of an n-Type Region by Ion Implantation -- 6.1.3 Formation of a p-Type Region by Ion Implantation -- 6.1.4 Formation of a Semi-Insulating Region by Ion Implantation -- 6.1.5 High-Temperature Annealing and Surface Roughening -- 6.1.6 Defect Formation by Ion Implantation and Subsequent Annealing -- 6.2 Etching -- 6.2.1 Reactive Ion Etching -- 6.2.2 High-Temperature Gas Etching -- 6.2.3 Wet Etching.
6.3 Oxidation and Oxide/SiC Interface Characteristics -- 6.3.1 Oxidation Rate -- 6.3.2 Dielectric Properties of Oxides -- 6.3.3 Structural and Physical Characterization of Thermal Oxides -- 6.3.4 Electrical Characterization Techniques and Their Limitations -- 6.3.5 Properties of the Oxide/SiC Interface and Their Improvement -- 6.3.6 Interface Properties of Oxide/SiC on Various Faces -- 6.3.7 Mobility-Limiting Factors -- 6.4 Metallization -- 6.4.1 Schottky Contacts on n-Type and p-Type SiC -- 6.4.2 Ohmic Contacts to n-Type and p-Type SiC -- 6.5 Summary -- References -- Chapter 7 Unipolar and Bipolar Power Diodes -- 7.1 Introduction to SiC Power Switching Devices -- 7.1.1 Blocking Voltage -- 7.1.2 Unipolar Power Device Figure of Merit -- 7.1.3 Bipolar Power Device Figure of Merit -- 7.2 Schottky Barrier Diodes (SBDs) -- 7.3 pn and pin Junction Diodes -- 7.3.1 High-Level Injection and the Ambipolar Diffusion Equation -- 7.3.2 Carrier Densities in the "i'' Region -- 7.3.3 Potential Drop across the "i'' Region -- 7.3.4 Current-Voltage Relationship -- 7.4 Junction-Barrier Schottky (JBS) and Merged pin-Schottky (MPS) Diodes -- References -- Chapter 8 Unipolar Power Switching Devices -- 8.1 Junction Field-Effect Transistors (JFETs) -- 8.1.1 Pinch-Off Voltage -- 8.1.2 Current-Voltage Relationship -- 8.1.3 Saturation Drain Voltage -- 8.1.4 Specific On-Resistance -- 8.1.5 Enhancement-Mode and Depletion-Mode Operation -- 8.1.6 Power JFET Implementations -- 8.2 Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) -- 8.2.1 Review of MOS Electrostatics -- 8.2.2 MOS Electrostatics with Split Quasi-Fermi Levels -- 8.2.3 MOSFET Current-Voltage Relationship -- 8.2.4 Saturation Drain Voltage -- 8.2.5 Specific On-Resistance -- 8.2.6 Power MOSFET Implementations: DMOSFETs and UMOSFETs -- 8.2.7 Advanced DMOSFET Designs -- 8.2.8 Advanced UMOS Designs.
8.2.9 Threshold Voltage Control -- 8.2.10 Inversion Layer Electron Mobility -- 8.2.11 Oxide Reliability -- 8.2.12 MOSFET Transient Response -- References -- Chapter 9 Bipolar Power Switching Devices -- 9.1 Bipolar Junction Transistors (BJTs) -- 9.1.1 Internal Currents -- 9.1.2 Gain Parameters -- 9.1.3 Terminal Currents -- 9.1.4 Current-Voltage Relationship -- 9.1.5 High-Current Effects in the Collector: Saturation and Quasi-Saturation -- 9.1.6 High-Current Effects in the Base: the Rittner Effect -- 9.1.7 High-Current Effects in the Collector: Second Breakdown and the Kirk Effect -- 9.1.8 Common Emitter Current Gain: Temperature Dependence -- 9.1.9 Common Emitter Current Gain: the Effect of Recombination -- 9.1.10 Blocking Voltage -- 9.2 Insulated-Gate Bipolar Transistors (IGBTs) -- 9.2.1 Current-Voltage Relationship -- 9.2.2 Blocking Voltage -- 9.2.3 Switching Characteristics -- 9.2.4 Temperature Dependence of Parameters -- 9.3 Thyristors -- 9.3.1 Forward Conducting Regime -- 9.3.2 Forward Blocking Regime and Triggering -- 9.3.3 The Turn-On Process -- 9.3.4 dV/dt Triggering -- 9.3.5 The dI/dt Limitation -- 9.3.6 The Turn-Off Process -- 9.3.7 Reverse-Blocking Mode -- References -- Chapter 10 Optimization and Comparison of Power Devices -- 10.1 Blocking Voltage and Edge Terminations for SiC Power Devices -- 10.1.1 Impact Ionization and Avalanche Breakdown -- 10.1.2 Two-Dimensional Field Crowding and Junction Curvature -- 10.1.3 Trench Edge Terminations -- 10.1.4 Beveled Edge Terminations -- 10.1.5 Junction Termination Extensions (JTEs) -- 10.1.6 Floating Field-Ring (FFR) Terminations -- 10.1.7 Multiple-Floating-Zone (MFZ) JTE and Space-Modulated (SM) JTE -- 10.2 Optimum Design of Unipolar Drift Regions -- 10.2.1 Vertical Drift Regions -- 10.2.2 Lateral Drift Regions -- 10.3 Comparison of Device Performance -- References.
Chapter 11 Applications of Silicon Carbide Devices in Power Systems -- 11.1 Introduction to Power Electronic Systems -- 11.2 Basic Power Converter Circuits -- 11.2.1 Line-Frequency Phase-Controlled Rectifiers and Inverters -- 11.2.2 Switch-Mode DC-DC Converters -- 11.2.3 Switch-Mode Inverters -- 11.3 Power Electronics for Motor Drives -- 11.3.1 Introduction to Electric Motors and Motor Drives -- 11.3.2 DC Motor Drives -- 11.3.3 Induction Motor Drives -- 11.3.4 Synchronous Motor Drives -- 11.3.5 Motor Drives for Hybrid and Electric Vehicles -- 11.4 Power Electronics for Renewable Energy -- 11.4.1 Inverters for Photovoltaic Power Sources -- 11.4.2 Converters for Wind Turbine Power Sources -- 11.5 Power Electronics for Switch-Mode Power Supplies -- 11.6 Performance Comparison of SiC and Silicon Power Devices -- References -- Chapter 12 Specialized Silicon Carbide Devices and Applications -- 12.1 Microwave Devices -- 12.1.1 Metal-Semiconductor Field-Effect Transistors (MESFETs) -- 12.1.2 Static Induction Transistors (SITs) -- 12.1.3 Impact Ionization Avalanche Transit-Time (IMPATT) Diodes -- 12.2 High-Temperature Integrated Circuits -- 12.3 Sensors -- 12.3.1 Micro-Electro-Mechanical Sensors (MEMS) -- 12.3.2 Gas Sensors -- 12.3.3 Optical Detectors -- References -- Appendix A Incomplete Dopant Ionization in 4H-SiC -- References -- Appendix B Properties of the Hyperbolic Functions -- Appendix C Major Physical Properties of Common SiC Polytypes -- C.1 Properties -- C.2 Temperature and/or Doping Dependence of Major Physical Properties -- References -- Index -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Chapter 1 Introduction -- 1.1 Progress in Electronics -- 1.2 Features and Brief History of Silicon Carbide -- 1.2.1 Early History -- 1.2.2 Innovations in SiC Crystal Growth -- 1.2.3 Promise and Demonstration of SiC Power Devices -- 1.3 Outline of This Book -- References -- Chapter 2 Physical Properties of Silicon Carbide -- 2.1 Crystal Structure -- 2.2 Electrical and Optical Properties -- 2.2.1 Band Structure -- 2.2.2 Optical Absorption Coefficient and Refractive Index -- 2.2.3 Impurity Doping and Carrier Density -- 2.2.4 Mobility -- 2.2.5 Drift Velocity -- 2.2.6 Breakdown Electric Field Strength -- 2.3 Thermal and Mechanical Properties -- 2.3.1 Thermal Conductivity -- 2.3.2 Phonons -- 2.3.3 Hardness and Mechanical Properties -- 2.4 Summary -- References -- Chapter 3 Bulk Growth of Silicon Carbide -- 3.1 Sublimation Growth -- 3.1.1 Phase Diagram of Si-C -- 3.1.2 Basic Phenomena Occurring during the Sublimation (Physical Vapor Transport) Method -- 3.1.3 Modeling and Simulation -- 3.2 Polytype Control in Sublimation Growth -- 3.3 Defect Evolution and Reduction in Sublimation Growth -- 3.3.1 Stacking Faults -- 3.3.2 Micropipe Defects -- 3.3.3 Threading Screw Dislocation -- 3.3.4 Threading Edge Dislocation and Basal Plane Dislocation -- 3.3.5 Defect Reduction -- 3.4 Doping Control in Sublimation Growth -- 3.4.1 Impurity Incorporation -- 3.4.2 n-Type Doping -- 3.4.3 p-Type Doping -- 3.4.4 Semi-Insulating -- 3.5 High-Temperature Chemical Vapor Deposition -- 3.6 Solution Growth -- 3.7 3C-SiC Wafers Grown by Chemical Vapor Deposition -- 3.8 Wafering and Polishing -- 3.9 Summary -- References -- Chapter 4 Epitaxial Growth of Silicon Carbide -- 4.1 Fundamentals of SiC Homoepitaxy -- 4.1.1 Polytype Replication in SiC Epitaxy -- 4.1.2 Theoretical Model of SiC Homoepitaxy.

4.1.3 Growth Rate and Modeling -- 4.1.4 Surface Morphology and Step Dynamics -- 4.1.5 Reactor Design for SiC Epitaxy -- 4.2 Doping Control in SiC CVD -- 4.2.1 Background Doping -- 4.2.2 n-Type Doping -- 4.2.3 p-Type Doping -- 4.3 Defects in SiC Epitaxial Layers -- 4.3.1 Extended Defects -- 4.3.2 Deep Levels -- 4.4 Fast Homoepitaxy of SiC -- 4.5 SiC Homoepitaxy on Non-standard Planes -- 4.5.1 SiC Homoepitaxy on Nearly On-Axis {0001} -- 4.5.2 SiC Homoepitaxy on Non-basal Planes -- 4.5.3 Embedded Homoepitaxy of SiC -- 4.6 SiC Homoepitaxy by Other Techniques -- 4.7 Heteroepitaxy of 3C-SiC -- 4.7.1 Heteroepitaxial Growth of 3C-SiC on Si -- 4.7.2 Heteroepitaxial Growth of 3C-SiC on Hexagonal SiC -- 4.8 Summary -- References -- Chapter 5 Characterization Techniques and Defects in Silicon Carbide -- 5.1 Characterization Techniques -- 5.1.1 Photoluminescence -- 5.1.2 Raman Scattering -- 5.1.3 Hall Effect and Capacitance-Voltage Measurements -- 5.1.4 Carrier Lifetime Measurements -- 5.1.5 Detection of Extended Defects -- 5.1.6 Detection of Point Defects -- 5.2 Extended Defects in SiC -- 5.2.1 Major Extended Defects in SiC -- 5.2.2 Bipolar Degradation -- 5.2.3 Effects of Extended Defects on SiC Device Performance -- 5.3 Point Defects in SiC -- 5.3.1 Major Deep Levels in SiC -- 5.3.2 Carrier Lifetime Killer -- 5.4 Summary -- References -- Chapter 6 Device Processing of Silicon Carbide -- 6.1 Ion Implantation -- 6.1.1 Selective Doping Techniques -- 6.1.2 Formation of an n-Type Region by Ion Implantation -- 6.1.3 Formation of a p-Type Region by Ion Implantation -- 6.1.4 Formation of a Semi-Insulating Region by Ion Implantation -- 6.1.5 High-Temperature Annealing and Surface Roughening -- 6.1.6 Defect Formation by Ion Implantation and Subsequent Annealing -- 6.2 Etching -- 6.2.1 Reactive Ion Etching -- 6.2.2 High-Temperature Gas Etching -- 6.2.3 Wet Etching.

6.3 Oxidation and Oxide/SiC Interface Characteristics -- 6.3.1 Oxidation Rate -- 6.3.2 Dielectric Properties of Oxides -- 6.3.3 Structural and Physical Characterization of Thermal Oxides -- 6.3.4 Electrical Characterization Techniques and Their Limitations -- 6.3.5 Properties of the Oxide/SiC Interface and Their Improvement -- 6.3.6 Interface Properties of Oxide/SiC on Various Faces -- 6.3.7 Mobility-Limiting Factors -- 6.4 Metallization -- 6.4.1 Schottky Contacts on n-Type and p-Type SiC -- 6.4.2 Ohmic Contacts to n-Type and p-Type SiC -- 6.5 Summary -- References -- Chapter 7 Unipolar and Bipolar Power Diodes -- 7.1 Introduction to SiC Power Switching Devices -- 7.1.1 Blocking Voltage -- 7.1.2 Unipolar Power Device Figure of Merit -- 7.1.3 Bipolar Power Device Figure of Merit -- 7.2 Schottky Barrier Diodes (SBDs) -- 7.3 pn and pin Junction Diodes -- 7.3.1 High-Level Injection and the Ambipolar Diffusion Equation -- 7.3.2 Carrier Densities in the "i'' Region -- 7.3.3 Potential Drop across the "i'' Region -- 7.3.4 Current-Voltage Relationship -- 7.4 Junction-Barrier Schottky (JBS) and Merged pin-Schottky (MPS) Diodes -- References -- Chapter 8 Unipolar Power Switching Devices -- 8.1 Junction Field-Effect Transistors (JFETs) -- 8.1.1 Pinch-Off Voltage -- 8.1.2 Current-Voltage Relationship -- 8.1.3 Saturation Drain Voltage -- 8.1.4 Specific On-Resistance -- 8.1.5 Enhancement-Mode and Depletion-Mode Operation -- 8.1.6 Power JFET Implementations -- 8.2 Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) -- 8.2.1 Review of MOS Electrostatics -- 8.2.2 MOS Electrostatics with Split Quasi-Fermi Levels -- 8.2.3 MOSFET Current-Voltage Relationship -- 8.2.4 Saturation Drain Voltage -- 8.2.5 Specific On-Resistance -- 8.2.6 Power MOSFET Implementations: DMOSFETs and UMOSFETs -- 8.2.7 Advanced DMOSFET Designs -- 8.2.8 Advanced UMOS Designs.

8.2.9 Threshold Voltage Control -- 8.2.10 Inversion Layer Electron Mobility -- 8.2.11 Oxide Reliability -- 8.2.12 MOSFET Transient Response -- References -- Chapter 9 Bipolar Power Switching Devices -- 9.1 Bipolar Junction Transistors (BJTs) -- 9.1.1 Internal Currents -- 9.1.2 Gain Parameters -- 9.1.3 Terminal Currents -- 9.1.4 Current-Voltage Relationship -- 9.1.5 High-Current Effects in the Collector: Saturation and Quasi-Saturation -- 9.1.6 High-Current Effects in the Base: the Rittner Effect -- 9.1.7 High-Current Effects in the Collector: Second Breakdown and the Kirk Effect -- 9.1.8 Common Emitter Current Gain: Temperature Dependence -- 9.1.9 Common Emitter Current Gain: the Effect of Recombination -- 9.1.10 Blocking Voltage -- 9.2 Insulated-Gate Bipolar Transistors (IGBTs) -- 9.2.1 Current-Voltage Relationship -- 9.2.2 Blocking Voltage -- 9.2.3 Switching Characteristics -- 9.2.4 Temperature Dependence of Parameters -- 9.3 Thyristors -- 9.3.1 Forward Conducting Regime -- 9.3.2 Forward Blocking Regime and Triggering -- 9.3.3 The Turn-On Process -- 9.3.4 dV/dt Triggering -- 9.3.5 The dI/dt Limitation -- 9.3.6 The Turn-Off Process -- 9.3.7 Reverse-Blocking Mode -- References -- Chapter 10 Optimization and Comparison of Power Devices -- 10.1 Blocking Voltage and Edge Terminations for SiC Power Devices -- 10.1.1 Impact Ionization and Avalanche Breakdown -- 10.1.2 Two-Dimensional Field Crowding and Junction Curvature -- 10.1.3 Trench Edge Terminations -- 10.1.4 Beveled Edge Terminations -- 10.1.5 Junction Termination Extensions (JTEs) -- 10.1.6 Floating Field-Ring (FFR) Terminations -- 10.1.7 Multiple-Floating-Zone (MFZ) JTE and Space-Modulated (SM) JTE -- 10.2 Optimum Design of Unipolar Drift Regions -- 10.2.1 Vertical Drift Regions -- 10.2.2 Lateral Drift Regions -- 10.3 Comparison of Device Performance -- References.

Chapter 11 Applications of Silicon Carbide Devices in Power Systems -- 11.1 Introduction to Power Electronic Systems -- 11.2 Basic Power Converter Circuits -- 11.2.1 Line-Frequency Phase-Controlled Rectifiers and Inverters -- 11.2.2 Switch-Mode DC-DC Converters -- 11.2.3 Switch-Mode Inverters -- 11.3 Power Electronics for Motor Drives -- 11.3.1 Introduction to Electric Motors and Motor Drives -- 11.3.2 DC Motor Drives -- 11.3.3 Induction Motor Drives -- 11.3.4 Synchronous Motor Drives -- 11.3.5 Motor Drives for Hybrid and Electric Vehicles -- 11.4 Power Electronics for Renewable Energy -- 11.4.1 Inverters for Photovoltaic Power Sources -- 11.4.2 Converters for Wind Turbine Power Sources -- 11.5 Power Electronics for Switch-Mode Power Supplies -- 11.6 Performance Comparison of SiC and Silicon Power Devices -- References -- Chapter 12 Specialized Silicon Carbide Devices and Applications -- 12.1 Microwave Devices -- 12.1.1 Metal-Semiconductor Field-Effect Transistors (MESFETs) -- 12.1.2 Static Induction Transistors (SITs) -- 12.1.3 Impact Ionization Avalanche Transit-Time (IMPATT) Diodes -- 12.2 High-Temperature Integrated Circuits -- 12.3 Sensors -- 12.3.1 Micro-Electro-Mechanical Sensors (MEMS) -- 12.3.2 Gas Sensors -- 12.3.3 Optical Detectors -- References -- Appendix A Incomplete Dopant Ionization in 4H-SiC -- References -- Appendix B Properties of the Hyperbolic Functions -- Appendix C Major Physical Properties of Common SiC Polytypes -- C.1 Properties -- C.2 Temperature and/or Doping Dependence of Major Physical Properties -- References -- Index -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.