ORPP logo
Image from Google Jackets

Morphing Wing Technologies : Large Commercial Aircraft and Civil Helicopters.

By: Contributor(s): Material type: TextTextPublisher: Oxford : Elsevier Science & Technology, 2017Copyright date: ©2018Edition: 1st edDescription: 1 online resource (970 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780081009697
Subject(s): Genre/Form: Additional physical formats: Print version:: Morphing Wing TechnologiesDDC classification:
  • 629.13432
LOC classification:
  • TL672.M677 2018
Online resources:
Contents:
Front Cover -- Morphing Wing Technologies: Large Commercial Aircraft and Civil Helicopters -- Copyright -- Dedication -- Contents -- Contributors -- Editor-in-Chief Biographies -- Biographies -- Co-Editor Biographies -- Contributor Biographies -- Foreword 1 -- Foreword 2 -- Preface -- Section 1: Introduction -- Chapter 1: Historical Background and Current Scenario -- 1. Introduction -- 2. Components of a Wing Morphing Structural System -- 2.1. Structural Skeleton -- 2.2. Actuation Systems -- 2.3. Skin -- 2.3.1. Sensor system -- 2.4. Control System -- 2.5. Cabling -- 2.6. Assembly -- 3. The Main Challenges -- 3.1. Skins -- 3.2. Actuation Systems -- 3.3. Sensor Systems -- 4. Back to the Past -- 4.1. The Wright's Flyer -- 4.2. Plane and the Like for Aeroplanes -- 4.3. The Parker's Wing -- 4.3.1. An earlier vision -- 5. Modern Times -- 5.1. NASA Studies -- 5.2. DGLR Studies -- 5.3. The Mission Adaptive Wing -- 5.4. Further NASA Studies -- 6. Recent Activities-United States -- 6.1. Adaptive Wing Reborn: SMAs -- 6.2. The DARPA Smart Wing Program -- 6.3. The DARPA Morphing Aircraft Structures Program -- 7. Recent Activities-Europe -- 7.1. ADIF -- 7.2. Clean Sky -- 8. Current Scenario -- 8.1. Airbus-SARISTU (Smart Intelligent Aircraft Structures) -- 8.2. Boeing-Adaptive Wing -- 8.3. Flexsys and Gulfstream -- 8.3.1. Other relevant projects: Change and NOVEMOR -- 8.3.2. Future projects -- 9. The Tradition at the University of Napoli and CIRA -- 9.1. Adaptive Airfoil -- 9.2. The Hinge-Less Wing -- 9.3. Smartflap -- 9.4. SADE -- 9.5. Clean Sky-JTI-GRA-Low Noise -- 9.6. EU-SARISTU -- 9.7. The Adaptive Aileron -- 9.7.1. The AG2 project (JTI-GRA2) and the next future -- 10. Future Perspectives -- 10.1. Safe Design -- 10.2. Skins and Fillers -- 10.3. Direct actuation: The use of smart materials -- 10.4. Wireless, distributed sensing.
10.5. Control system architecture -- 10.6. Cybernetics and Robotics -- Acknowledgments -- References -- University of Napoli and CIRA International Awards -- Chapter 2: Aircraft Morphing-An Industry Vision -- 1. Introduction -- 2. Current Aircraft Capabilities -- 2.1. Interest of Industry -- 2.2. Some Considerations About Industry Aerodynamic Design Process -- 2.3. Expected Performance Targets -- 2.4. Manufacturing: New Materials and Controlled Industrial Processes -- 2.5. Assembly and Quality: Automation and Integrated Parts -- 2.6. Maintenance: Assessed Steps and Personnel Training -- 2.7. Safety: Assessed Methods for Standard Architectures -- 3. Current and Expected Needs -- 3.1. Technology Transition -- 3.2. A Mission Configurable Wing -- 3.3. Improved Flaps and Ailerons -- 4. Morphing as a Solution -- 4.1. Wing and Control Surface Feasible Solutions -- 4.2. Some Specific Requirements -- 5. Conclusions -- References -- Chapter 3: The Development of Morphing Aircraft Benefit Assessment -- 1. Experiments as Basis for Morphing Progress -- 2. The Advent of Transonic Methods -- 3. Automated Methods as Enabler for Large Scale Studies -- 4. Reintroduction of Flexible Materials -- 5. The Final Step to Industrial Application -- References -- Section 2: Requirements and Performance -- Chapter 4: Span Morphing Concept: An Overview -- 1. Introduction -- 2. Effects of Span Increase -- 2.1. Aerodynamic Effects -- 2.2. Structural Effects -- 2.3. Stability and Control Effects -- 3. Span Morphing Concepts and Aircraft Performance -- 3.1. Symmetric Span Morphing -- 3.1.1. Aerodynamic aspects of span morphing -- 3.1.2. Structural and performance aspects of span morphing -- 3.1.3. Scalability aspects of span morphing -- 3.2. Asymmetric Span Morphing -- 3.2.1. Actuation speed requirements -- 3.2.2. CG position shifts and inertial effects.
4. Implementation Challenges -- 4.1. Telescopic Wings -- 4.2. Hinged Structures -- 4.3. Twin Spars -- 4.3.1. Elastic skins -- 5. Conclusions -- Acknowledgments -- References -- Chapter 5: Adjoint-Based Aerodynamic Shape Optimization Applied to Morphing Technology on a Regional Aircraft Wing -- 1. Introduction -- 2. Handling of Morphing Shape Changes in a CFD Context -- 2.1. Context of the Study -- 2.2. Discrete Model of Displacement Field at the Trailing Edge -- 2.3. 3D CFD Mesh Deformation Technique -- 3. CFD Evaluation and Far-Field Drag Analysis Over a Wing Equipped with a Morphing System -- 3.1. Finite-Volume Solver for the RANS Equations in elsA -- 3.2. Far-Field Drag Extraction Tool -- 4. Sensitivity Analysis Using a Discrete Adjoint of the RANS Equations -- 4.1. Residual and Objective Function Dependencies -- 4.2. Discrete Adjoint Method in elsA -- 5. Local Shape Optimization Technique -- 5.1. Definition of the Problem -- 5.2. The Method of Feasible Directions -- 5.3. A 2D Example: The Rosenbrock's Function Constrained by a Disk -- 6. Aerodynamic Shape Optimization of Morphing System: An Application Within the EU Project SARISTU -- 6.1. Optimization Problem -- 6.2. Optimization Loop Presentation -- 6.3. First Optimization -- 6.4. Second Optimization -- 6.5. Expectations on Morphing Technology -- 7. Conclusion -- References -- Further Reading -- Chapter 6: Expected Performances -- 1. Introduction -- 2. The Reference Aircraft -- 3. Active Camber Using Conventional Control Surfaces -- 3.1. Five Panels Over the Flap Region -- 4. Coupled Aerostructural Shape Optimization -- 4.1. Morphing Leading Edge -- 4.2. Morphing Trailing Edge -- 5. Fuel Savings -- 6. High-Fidelity Aerodynamic Analysis -- 6.1. Leading Edge Morphing -- 6.2. Trailing Edge Morphing -- 7. Weight Saving -- 7.1. Morphing Devices.
8. Benefit Exploitation in the Transport Aircraft Design -- 9. Conclusions -- Acknowledgments -- References -- Section 3: Morphing Skins -- Chapter 7: Morphing Skin: Foams -- 1. Introduction -- 2. Design Principles -- 3. Low Temperature Elastomers -- 4. Material Properties of HYPERFLEX -- 5. Properties of Bonded Joints -- 6. Properties of Morphing Skin -- 7. Skin Manufacturing -- 8. Summary and Conclusions -- References -- Chapter 8: The Design of Skin Panels for Morphing Wings in Lattice Materials -- 1. Introduction -- 2. Requirements for the Skin of a Morphing Wing -- 3. A Methodology for Nonlinear Homogenization of Periodic Structures -- 4. Mechanical Properties of Skin Panels in Lattice Material -- 4.1. Analysis of Selected Lattice Topologies -- 4.2. The Design Space of the Chevron Lattice -- 5. Conclusions -- References -- Chapter 9: Composite Corrugated Laminates for Morphing Applications -- 1. Introduction -- 2. Types of Corrugated Laminates -- 3. Anisotropy and Stiffness Properties in Morphing Direction -- 3.1. Anisotropy Indices of Stiffness Properties -- 3.2. Compliance in Morphing Directions of Different Types of Composite Corrugated Laminates -- 4. Strength and Stiffness Contributions in Nonmorphing Directions -- 4.1. Failure Modes of Composite Corrugated Laminates and Strain Limits -- 4.2. Evaluation of Structural Stiffness Contribution in Nonmorphing Directions -- 5. Manufacturing of Composite Corrugated Laminates -- 6. Development of Aerodynamically Efficient Morphing Skins -- 6.1. Aerodynamic Issues in the Application of Composite Corrugated Laminates -- 6.2. Performance Index Based on Ratio Between Bending and Axial Compliance -- 6.3. Integration of an Elastomertic Cover on a Square-Shaped Corrugated Laminate -- 7. Conclusions -- References -- Section 4: Systems Design -- Chapter 10: Active Metal Structures -- 1. Introduction.
2. Morphing Oriented Kinematic Chains: Working Principles and Design Approaches -- 2.1. Spar Caps Section Area at Generic Cross-section -- 2.2. Spars Webs, Skin Panels, Rib Plate Thickness at Generic Cross-Section -- 3. Compliant Mechanisms: Working Principles and Design Approaches -- 4. Applications of Morphing Oriented Kinematic Chains -- 4.1. Morphing Concept Overview -- 4.2. Structural Analyses -- 5. Applications of the Compliant Mechanism Approach -- 5.1. Arc-Based Flap, Actuated by SMA Active Elements -- 5.2. X-Cell Architecture for a Single Slotted Flap -- 6. Conclusions -- References -- Chapter 11: Sensor Systems for Smart Architectures -- 1. Introduction -- 2. Strain Sensors -- 2.1. Strain Gauge Foils -- 2.2. Piezoelectric Devices -- 2.3. Graphene-Based Polymers -- 2.4. Fiber Optics -- 2.4.1. Associated Electronics -- 2.4.2. Connectors -- 2.4.3. Splicers -- 3. Sensor Systems for Large Scale Integration -- 3.1. Wireless Technology -- 3.2. Sprayed Technology -- 3.3. Distributed Technology -- 3.4. Some Installation Issues -- 4. Case Studies -- 4.1. Shape Reconstruction of a Variable Camber Wing Trailing Edge -- 4.2. Damage and Load Monitoring -- 4.3. Rotation Angle Monitoring -- 5. Conclusions and Perspectives -- References -- Chapter 12: Control Techniques for a Smart Actuated Morphing Wing Model: Design, Numerical Simulation and Experimental Va ... -- 1. Introduction -- 2. Project Background -- 3. General Structures of the Open Loop and Closed Loop Control Architectures -- 4. Open Loop Controllers -- 4.1. Fuzzy Logic PD Controller -- 4.2. Combined On-Off and PID Fuzzy Logic Controller -- 4.3. Combined On-Off and Cascade PD-PI Fuzzy Logic Controller -- 4.4. Combined On-Off and Self-Tuning Fuzzy Logic Controller -- 5. Optimized Closed Loop Control Method -- 6. Conclusions -- Acknowledgments -- References -- Section 5: Numerical Simulation.
Chapter 13: Influence of the Elastic Constraint on the Functionality of Integrated Morphing Devices.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Front Cover -- Morphing Wing Technologies: Large Commercial Aircraft and Civil Helicopters -- Copyright -- Dedication -- Contents -- Contributors -- Editor-in-Chief Biographies -- Biographies -- Co-Editor Biographies -- Contributor Biographies -- Foreword 1 -- Foreword 2 -- Preface -- Section 1: Introduction -- Chapter 1: Historical Background and Current Scenario -- 1. Introduction -- 2. Components of a Wing Morphing Structural System -- 2.1. Structural Skeleton -- 2.2. Actuation Systems -- 2.3. Skin -- 2.3.1. Sensor system -- 2.4. Control System -- 2.5. Cabling -- 2.6. Assembly -- 3. The Main Challenges -- 3.1. Skins -- 3.2. Actuation Systems -- 3.3. Sensor Systems -- 4. Back to the Past -- 4.1. The Wright's Flyer -- 4.2. Plane and the Like for Aeroplanes -- 4.3. The Parker's Wing -- 4.3.1. An earlier vision -- 5. Modern Times -- 5.1. NASA Studies -- 5.2. DGLR Studies -- 5.3. The Mission Adaptive Wing -- 5.4. Further NASA Studies -- 6. Recent Activities-United States -- 6.1. Adaptive Wing Reborn: SMAs -- 6.2. The DARPA Smart Wing Program -- 6.3. The DARPA Morphing Aircraft Structures Program -- 7. Recent Activities-Europe -- 7.1. ADIF -- 7.2. Clean Sky -- 8. Current Scenario -- 8.1. Airbus-SARISTU (Smart Intelligent Aircraft Structures) -- 8.2. Boeing-Adaptive Wing -- 8.3. Flexsys and Gulfstream -- 8.3.1. Other relevant projects: Change and NOVEMOR -- 8.3.2. Future projects -- 9. The Tradition at the University of Napoli and CIRA -- 9.1. Adaptive Airfoil -- 9.2. The Hinge-Less Wing -- 9.3. Smartflap -- 9.4. SADE -- 9.5. Clean Sky-JTI-GRA-Low Noise -- 9.6. EU-SARISTU -- 9.7. The Adaptive Aileron -- 9.7.1. The AG2 project (JTI-GRA2) and the next future -- 10. Future Perspectives -- 10.1. Safe Design -- 10.2. Skins and Fillers -- 10.3. Direct actuation: The use of smart materials -- 10.4. Wireless, distributed sensing.

10.5. Control system architecture -- 10.6. Cybernetics and Robotics -- Acknowledgments -- References -- University of Napoli and CIRA International Awards -- Chapter 2: Aircraft Morphing-An Industry Vision -- 1. Introduction -- 2. Current Aircraft Capabilities -- 2.1. Interest of Industry -- 2.2. Some Considerations About Industry Aerodynamic Design Process -- 2.3. Expected Performance Targets -- 2.4. Manufacturing: New Materials and Controlled Industrial Processes -- 2.5. Assembly and Quality: Automation and Integrated Parts -- 2.6. Maintenance: Assessed Steps and Personnel Training -- 2.7. Safety: Assessed Methods for Standard Architectures -- 3. Current and Expected Needs -- 3.1. Technology Transition -- 3.2. A Mission Configurable Wing -- 3.3. Improved Flaps and Ailerons -- 4. Morphing as a Solution -- 4.1. Wing and Control Surface Feasible Solutions -- 4.2. Some Specific Requirements -- 5. Conclusions -- References -- Chapter 3: The Development of Morphing Aircraft Benefit Assessment -- 1. Experiments as Basis for Morphing Progress -- 2. The Advent of Transonic Methods -- 3. Automated Methods as Enabler for Large Scale Studies -- 4. Reintroduction of Flexible Materials -- 5. The Final Step to Industrial Application -- References -- Section 2: Requirements and Performance -- Chapter 4: Span Morphing Concept: An Overview -- 1. Introduction -- 2. Effects of Span Increase -- 2.1. Aerodynamic Effects -- 2.2. Structural Effects -- 2.3. Stability and Control Effects -- 3. Span Morphing Concepts and Aircraft Performance -- 3.1. Symmetric Span Morphing -- 3.1.1. Aerodynamic aspects of span morphing -- 3.1.2. Structural and performance aspects of span morphing -- 3.1.3. Scalability aspects of span morphing -- 3.2. Asymmetric Span Morphing -- 3.2.1. Actuation speed requirements -- 3.2.2. CG position shifts and inertial effects.

4. Implementation Challenges -- 4.1. Telescopic Wings -- 4.2. Hinged Structures -- 4.3. Twin Spars -- 4.3.1. Elastic skins -- 5. Conclusions -- Acknowledgments -- References -- Chapter 5: Adjoint-Based Aerodynamic Shape Optimization Applied to Morphing Technology on a Regional Aircraft Wing -- 1. Introduction -- 2. Handling of Morphing Shape Changes in a CFD Context -- 2.1. Context of the Study -- 2.2. Discrete Model of Displacement Field at the Trailing Edge -- 2.3. 3D CFD Mesh Deformation Technique -- 3. CFD Evaluation and Far-Field Drag Analysis Over a Wing Equipped with a Morphing System -- 3.1. Finite-Volume Solver for the RANS Equations in elsA -- 3.2. Far-Field Drag Extraction Tool -- 4. Sensitivity Analysis Using a Discrete Adjoint of the RANS Equations -- 4.1. Residual and Objective Function Dependencies -- 4.2. Discrete Adjoint Method in elsA -- 5. Local Shape Optimization Technique -- 5.1. Definition of the Problem -- 5.2. The Method of Feasible Directions -- 5.3. A 2D Example: The Rosenbrock's Function Constrained by a Disk -- 6. Aerodynamic Shape Optimization of Morphing System: An Application Within the EU Project SARISTU -- 6.1. Optimization Problem -- 6.2. Optimization Loop Presentation -- 6.3. First Optimization -- 6.4. Second Optimization -- 6.5. Expectations on Morphing Technology -- 7. Conclusion -- References -- Further Reading -- Chapter 6: Expected Performances -- 1. Introduction -- 2. The Reference Aircraft -- 3. Active Camber Using Conventional Control Surfaces -- 3.1. Five Panels Over the Flap Region -- 4. Coupled Aerostructural Shape Optimization -- 4.1. Morphing Leading Edge -- 4.2. Morphing Trailing Edge -- 5. Fuel Savings -- 6. High-Fidelity Aerodynamic Analysis -- 6.1. Leading Edge Morphing -- 6.2. Trailing Edge Morphing -- 7. Weight Saving -- 7.1. Morphing Devices.

8. Benefit Exploitation in the Transport Aircraft Design -- 9. Conclusions -- Acknowledgments -- References -- Section 3: Morphing Skins -- Chapter 7: Morphing Skin: Foams -- 1. Introduction -- 2. Design Principles -- 3. Low Temperature Elastomers -- 4. Material Properties of HYPERFLEX -- 5. Properties of Bonded Joints -- 6. Properties of Morphing Skin -- 7. Skin Manufacturing -- 8. Summary and Conclusions -- References -- Chapter 8: The Design of Skin Panels for Morphing Wings in Lattice Materials -- 1. Introduction -- 2. Requirements for the Skin of a Morphing Wing -- 3. A Methodology for Nonlinear Homogenization of Periodic Structures -- 4. Mechanical Properties of Skin Panels in Lattice Material -- 4.1. Analysis of Selected Lattice Topologies -- 4.2. The Design Space of the Chevron Lattice -- 5. Conclusions -- References -- Chapter 9: Composite Corrugated Laminates for Morphing Applications -- 1. Introduction -- 2. Types of Corrugated Laminates -- 3. Anisotropy and Stiffness Properties in Morphing Direction -- 3.1. Anisotropy Indices of Stiffness Properties -- 3.2. Compliance in Morphing Directions of Different Types of Composite Corrugated Laminates -- 4. Strength and Stiffness Contributions in Nonmorphing Directions -- 4.1. Failure Modes of Composite Corrugated Laminates and Strain Limits -- 4.2. Evaluation of Structural Stiffness Contribution in Nonmorphing Directions -- 5. Manufacturing of Composite Corrugated Laminates -- 6. Development of Aerodynamically Efficient Morphing Skins -- 6.1. Aerodynamic Issues in the Application of Composite Corrugated Laminates -- 6.2. Performance Index Based on Ratio Between Bending and Axial Compliance -- 6.3. Integration of an Elastomertic Cover on a Square-Shaped Corrugated Laminate -- 7. Conclusions -- References -- Section 4: Systems Design -- Chapter 10: Active Metal Structures -- 1. Introduction.

2. Morphing Oriented Kinematic Chains: Working Principles and Design Approaches -- 2.1. Spar Caps Section Area at Generic Cross-section -- 2.2. Spars Webs, Skin Panels, Rib Plate Thickness at Generic Cross-Section -- 3. Compliant Mechanisms: Working Principles and Design Approaches -- 4. Applications of Morphing Oriented Kinematic Chains -- 4.1. Morphing Concept Overview -- 4.2. Structural Analyses -- 5. Applications of the Compliant Mechanism Approach -- 5.1. Arc-Based Flap, Actuated by SMA Active Elements -- 5.2. X-Cell Architecture for a Single Slotted Flap -- 6. Conclusions -- References -- Chapter 11: Sensor Systems for Smart Architectures -- 1. Introduction -- 2. Strain Sensors -- 2.1. Strain Gauge Foils -- 2.2. Piezoelectric Devices -- 2.3. Graphene-Based Polymers -- 2.4. Fiber Optics -- 2.4.1. Associated Electronics -- 2.4.2. Connectors -- 2.4.3. Splicers -- 3. Sensor Systems for Large Scale Integration -- 3.1. Wireless Technology -- 3.2. Sprayed Technology -- 3.3. Distributed Technology -- 3.4. Some Installation Issues -- 4. Case Studies -- 4.1. Shape Reconstruction of a Variable Camber Wing Trailing Edge -- 4.2. Damage and Load Monitoring -- 4.3. Rotation Angle Monitoring -- 5. Conclusions and Perspectives -- References -- Chapter 12: Control Techniques for a Smart Actuated Morphing Wing Model: Design, Numerical Simulation and Experimental Va ... -- 1. Introduction -- 2. Project Background -- 3. General Structures of the Open Loop and Closed Loop Control Architectures -- 4. Open Loop Controllers -- 4.1. Fuzzy Logic PD Controller -- 4.2. Combined On-Off and PID Fuzzy Logic Controller -- 4.3. Combined On-Off and Cascade PD-PI Fuzzy Logic Controller -- 4.4. Combined On-Off and Self-Tuning Fuzzy Logic Controller -- 5. Optimized Closed Loop Control Method -- 6. Conclusions -- Acknowledgments -- References -- Section 5: Numerical Simulation.

Chapter 13: Influence of the Elastic Constraint on the Functionality of Integrated Morphing Devices.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.