Groups, Rings, Group Rings, and Hopf Algebras.
Material type:
- text
- computer
- online resource
- 9781470440428
- 512.4
- QA174.G768 2017
Cover -- Title page -- Contents -- Preface -- The Dixmier-Moeglin equivalence for extensions of scalars and Ore extensions -- 1. Introduction -- 2. The Dixmier-Moeglin equivalence under base change -- 3. Linear operators on rings -- 4. Proof of Theorem 1.6 -- Acknowledgments -- References -- Nagata-Higman and rings with involution -- References -- On left symmetric color algebras -- 1. Introduction -- 2. Left symmetric color algebras and nondegenerate color symmetric 2-cocycles -- 3. Lifting the derivations of into the derivations of * -- Acknowledgements -- References -- On the automorphism group of rational group algebras of finite groups -- 1. Introduction -- 2. Preliminaries -- 3. Group algebras of simple groups -- 4. Non-simple groups -- References -- Graded simple modules and loop modules -- 1. Introduction -- 2. Graded simple modules -- 3. Loop modules -- 4. The groupoids \frM( ) and \frN( ) -- 5. Graded simple modules with finite-dimensional centralizers -- 6. Graded simple modules with simple centralizers -- 7. Finite-dimensional graded simple modules in characteristic zero -- References -- Symmetric groups and fixed points on modules: An application of group theory to topology -- 1. Introduction -- 2. Theorem 2.1 -- 3. The norm map -- References -- Free unit groups in group rings and division rings: My collaboration with Don Passman -- 1. Introduction -- 2. Our first work -- 3. The following years -- 4. The proof of Theorem 3.2 -- 5. Involutions in group rings -- 6. Our exploits in division rings -- References -- Group rings and Jordan decomposition -- 1. Introduction -- 2. Matrix Rings -- 3. Group Rings -- 4. Future Work -- References -- On the Toeplitz-Jacobson algebra and direct finiteness -- 1. Introduction -- 2. The results -- 3. The direct finiteness conjecture and other outstanding problems -- Acknowledgment -- References.
Frobenius divisibility for Hopf algebras -- Introduction -- 1. Symmetric Algebras -- 2. Hopf Algebras -- Acknowledgement -- References -- Generalized nil-Coxeter algebras, cocommutative algebras, and the PBW property -- 1. Introduction -- 2. Cocommutative algebras, smash products, and the PBW theorem -- 3. Characterization via deformation theory -- 4. The case of bialgebras and Hopf algebras -- 5. Generalized nil-Coxeter algebras and grouplike algebras -- 6. Deformations over cocommutative algebras with nilpotent maximal ideals -- Acknowledgments -- References -- -subgroups of units in ℤ -- 1. Introduction -- 2. Known results -- 3. Frobenius Groups -- 4. Crucial examples for simple linear groups -- 5. Conjugacy in larger group rings -- References -- On the classification of finite-dimensional semisimple Hopf algebras -- 0. Introduction -- 1. Abelian extensions -- 2. Structure of ²_{ }(\myk _{ },\myk^{ },\tl) -- 3. The Isomorphism Theorems -- 4. Almost Abelian Hopf Algebras of Dimension \le ⁴ -- 5. Some old classification results revisited -- 6. Appendices -- References -- Zero divisors in group rings of wreath products of groups -- 1. Introduction. -- 2. Preliminaries. -- 3. The Proof of Theorem I. -- 4. Proofs of Theorems II and III. -- 5. Embedding in simple Artinian rings and division rings. -- 6. Concluding remarks. -- References -- The lattice of submodules of a multiplicity-free module -- 1. Introduction. -- 2. Distributive Lattices. -- 3. Applications and Examples. -- References -- Star group identities on units of group algebras -- 1. Introduction -- 2. Basic facts -- 3. SLC groups -- 4. Symmetric units -- 5. Star group identities -- References -- A note on group algebras of locally compact groups -- 1. Preliminaries -- 2. Automorphism-invariant group algebras of locally compact groups.
3. Generalized group algebras of locally compact groups -- 4. Open Problems -- References -- Elementary construction of Lusztig's canonical basis -- 1. Introduction -- 2. Notation -- 3. Braid group action and PBW bases -- 4. Equality mod and piecewise linear bijections -- 5. Triangularity of bar involution and the canonical basis -- 6. Properties of the canonical basis -- 7. Example: Crystal operators from piecewise linear bijections -- Acknowledgements -- References -- Back Cover.
This volume contains the proceedings of the International Conference on Groups, Rings, Group Rings, and Hopf Algebras, held October 2-4, 2015 at Loyola University, Chicago, IL, and the AMS Special Session on Groups, Rings, Group Rings, and Hopf Algebras, held October 3-4, 2015, at Loyola University, Chicago, IL. Both conferences were held in honor of Donald S. Passman's 75th Birthday. Centered in the area of group rings and algebras, this volume contains a mixture of cutting edge research topics in group theory, ring theory, algebras and their representations, Hopf algebras and quantum groups.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.