ORPP logo
Image from Google Jackets

Coagulation and Flocculation in Water and Wastewater Treatment.

By: Material type: TextTextPublisher: London : IWA Publishing, 2016Copyright date: ©2016Edition: 3rd edDescription: 1 online resource (538 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781780407500
Subject(s): Genre/Form: Additional physical formats: Print version:: Coagulation and Flocculation in Water and Wastewater TreatmentDDC classification:
  • 628.35015413415
LOC classification:
  • TD455B738 2016
Online resources:
Contents:
Cover -- Copyright -- Contents -- Preface -- Chapter 1: Introduction -- 1.1 General -- 1.2 Stability and Destabilization -- 1.3 Definitions -- 1.4 Performance Criteria -- 1.5 Summary -- 1.6 References -- Chapter 2: Colloids and interfaces -- 2.1 Introduction -- 2.2 Origin of Surface Charge -- 2.3 Effect of Surface Charge -- 2.4 Adsorption -- 2.5 Inner Part of Electrical Double Layer -- 2.6 Diffuse Part of Electrical Double Layer -- 2.6.1 Assumptions -- 2.6.2 Distribution of potential with distance from the charged surface -- 2.6.3 Thickness of double layer -- 2.6.4 Effect of ionic strength on double layer -- 2.6.5 Effect of nature of counter ions -- 2.7 Stern's Model of Complete Double Layer -- 2.8 Colloid Stability in Terms of the Double Layer -- 2.8.1 Energy of interaction between particles -- 2.8.2 Theoretical optimal concentration of electrolyte required for destabilization -- 2.8.3 Schulze-Hardy rule -- 2.9 Electrokinetic Measurements -- 2.10 References -- Chapter 3: Coagulants -- 3.1 Introduction -- 3.2 Metal Coagulants -- 3.2.1 Commonly used metal coagulants -- 3.2.1.1 Aluminum sulfate -- 3.2.1.2 Acidified aluminum sulfate (Acid alum) -- 3.2.1.3 Aluminum chloride -- 3.2.1.4 Sodium aluminate -- 3.2.1.5 Ferric sulfate -- 3.2.1.6 Ferrous sulfate -- 3.2.1.7 Chlorinated ferrous sulfate -- 3.2.1.8 Ferric chloride -- 3.2.1.9 Prepolymerized aluminum and iron coagulants -- 3.2.1.9.1 Aluminum chlorohydrate -- 3.2.1.9.2 Polyaluminum chloride -- 3.2.1.9.3 Polyaluminum silicate sulfate and polyaluminum silicate chloride -- 3.2.1.9.4 Polymerized ferric and blended aluminum-ferric coagulants -- 3.2.1.9.5 Handling of pre-polymerized coagulants -- 3.2.1.10 Preparation and feeding of coagulant products -- 3.2.1.11 Contamination of commercial chemicals -- 3.2.2 Chemistry of metal coagulants -- 3.2.2.1 Hydration and stepwise substitution reactions.
3.2.2.2 Alkalinity consumption by metal coagulants -- 3.2.2.3 Stability of metal-ion hydrolysis species -- 3.2.2.4 Average coordination number -- 3.2.2.5 Species distribution during destabilization -- 3.3 Polymers -- 3.3.1 General -- 3.3.2 Activated silica -- 3.3.3 Natural polyelectrolytes -- 3.3.3.1 Seeds from the moringa oleifera tree -- 3.3.3.2 Starches -- 3.3.3.3 Guar gums -- 3.3.3.4 Tannins -- 3.3.3.5 Chitosan -- 3.3.3.6 Sodium alginate -- 3.3.4 Synthetic polymers -- 3.3.4.1 Structure of synthetic polyelectrolytes -- 3.3.4.2 Charge density and molecular weight -- 3.3.4.3 Forms of polymer -- 3.3.4.3.1 Dry polymers -- 3.3.4.3.2 Emulsion polymers -- 3.3.4.3.3 Mannich polymers -- 3.3.4.3.4 Solution polymers -- 3.3.4.4 Preparation of synthetic polymer solutions -- 3.3.4.5 Toxicity of synthetic polyelectrolytes -- 3.4 References -- Chapter 4: Treatment with metal coagulants -- 4.1 Introduction -- 4.2 Destabilization of Hydrophobic Colloids -- 4.2.1 Extent of hydrolysis and adsorption -- 4.2.2 Effect of coagulant dosage -- 4.2.3 Effect of colloid concentration -- 4.2.4 Effect of pH -- 4.2.4.1 General -- 4.2.4.2 pH 1.0 -- 4.2.4.3 pH 2.0 -- 4.2.4.4 pH 3.0 to 5.0 -- 4.2.4.5 pH 6.0 to 9.0 -- 4.2.4.6 Further considerations -- 4.3 Destabilization of Hydrophilic Colloids -- 4.4 Removal of Natural Organic Matter -- 4.4.1 Organic color -- 4.4.1.1 Nature of organic color -- 4.4.1.2 Classification of organic color -- 4.4.1.3 Disadvantages of organic color in water supplies -- 4.4.1.4 Measurement of color -- 4.4.1.5 Destabilization of organic color with metal coagulants -- 4.4.2 Enhanced coagulation -- 4.4.2.1 Effectiveness of metal coagulants -- 4.4.2.2 Mechanisms of NOM removal with metal coagulants -- 4.4.2.3 Predictive models for enhanced coagulation -- 4.4.2.4 Importance of jar tests -- 4.4.2.5 Impacts of enhanced coagulation.
4.5 Algae Removal and Harvesting -- 4.6 Pathogen Removal -- 4.6.1 Removal of Giardia and Cryptosporidium -- 4.6.2 Virus removal -- 4.7 Effect of Anions -- 4.7.1 General -- 4.7.2 Effect of sulfate -- 4.7.3 Effect of phosphate -- 4.8 Chemical Phosphorus Removal in Wastewater Treatment -- 4.8.1 General -- 4.8.2 Mechanisms of chemical phosphorus removal -- 4.8.2.1 Simultaneous phosphorus precipitation -- 4.8.2.2 Sequential phosphorus precipitation -- 4.8.3 Applications of chemical phosphorus removal -- 4.8.3.1 Alternative methods of phosphorus precipitation -- 4.9 Dissolved Organic Nitrogen (DON) Removal in Wastewater Treatment -- 4.9.1 General -- 4.9.2 Characteristics of effluent DON -- 4.9.3 Impacts of effluent DON -- 4.9.4 Measurement of DON -- 4.9.5 Strategies for DON removal -- 4.9.5.1 Enhanced coagulation -- 4.9.5.2 Impacts of DON removal on phosphorus and other constituents -- 4.9.5.3 Solid-liquid separation technology -- 4.9.5.4 Other approaches for DON removal -- 4.10 Wastewater Treatment by Coagulation and Chemically Enhanced Primary Treatment, CEPT -- 4.10.1 Dependence of CEPT removals on wastewater characteristics -- 4.10.2 Case studies of CEPT -- 4.10.3 Parameters for CEPT control -- 4.10.4 Degree of flocculation required for CEPT -- 4.11 Activated Sludge Bulking and Foaming Control and Enhanced Bioflocculation -- 4.12 Inorganics Removal -- 4.12.1 Arsenic removal -- 4.12.2 Copper removal -- 4.12.3 Fluoride removal -- 4.12.4 Manganese removal -- 4.13 Staged Coagulation and Sequencing -- 4.14 Effects of Preozonation -- 4.15 Effects of Temperature -- 4.16 Residual Aluminum -- 4.17 References -- Chapter 5: Treatment with polymers -- 5.1 Introduction -- 5.2 Mechanisms of Destabilization -- 5.2.1 General -- 5.2.2 The bridging mechanism -- 5.2.2.1 Dispersion in the suspension -- 5.2.2.2 Adsorption at the solid-liquid interface.
5.2.2.3 Compression of adsorbed chains -- 5.2.2.4 Bridge formation -- 5.2.3 The electrostatic patch mechanism -- 5.3 Polyelectrolytes as Primary Coagulants -- 5.3.1 General -- 5.3.2 Turbidity removal using polyelectrolytes -- 5.3.3 Organics removal using polyelectrolytes -- 5.3.4 Algae removal and harvesting using polyelectrolytes -- 5.3.5 Pathogen removal using polyelectrolytes -- 5.3.6 Wastewater treatment by coagulation with polyelectrolytes and CEPT -- 5.3.7 Activated sludge bulking and foaming control and enhanced bioflocculation -- 5.4 Polyelectrolytes as Flocculant Aids -- 5.4.1 Polymers as filter aids -- 5.5 Polymers as Sludge Conditioners -- 5.6 References -- Chapter 6: Rapid mixing -- 6.1 Introduction -- 6.2 Requirements for Rapid Mixing Devices -- 6.2.1 General -- 6.2.2 Comparison of back-mix and plug-flow reactors -- 6.2.3 Velocity gradient requirements -- 6.2.4 Rapid mixer retention time -- 6.2.5 Tapered rapid mix velocity gradient -- 6.2.6 Coagulant feed concentration -- 6.2.7 Sequence of chemical addition -- 6.3 Design of Rapid Mixing Devices -- 6.3.1 General -- 6.3.2 Backmix reactors -- 6.3.3 In-line mixers without controlled velocity gradient -- 6.3.3.1 Pipe bend -- 6.3.3.2 Sudden expansion within a pipe -- 6.3.3.3 Orifice plate within a pipe -- 6.3.3.4 Diffuser grids in channel -- 6.3.3.5 Hydraulic jump in channel -- 6.3.4 In-line mixers with controlled velocity gradient -- 6.4 References -- Chapter 7: Flocculation -- 7.1 Introduction -- 7.2 Perikinetic Flocculation -- 7.3 Orthokinetic Flocculation -- 7.3.1 Theoretical development -- 7.3.2 Working equation -- 7.3.3 Flocculation reactors in series -- 7.3.4 Adequacy of G and GT as design parameters -- 7.3.5 Experimental determination of flocculation parameters -- 7.3.5.1 Inconstancy of KB -- 7.4 Design of Flocculation Basins -- 7.4.1 General.
7.4.2 Types of flocculation chambers and devices -- 7.4.2.1 Baffled chambers -- 7.4.2.2 Granular media beds -- 7.4.2.3 Other hydraulic flocculators -- 7.4.2.4 Diffused air -- 7.4.2.5 Rotating blades -- 7.4.2.6 Reciprocating blades -- 7.4.2.7 Start-up of flocculation devices -- 7.4.3 Short circuiting in flocculation reactors -- 7.4.4 Compartmentalization -- 7.4.5 Combined flocculation - sedimentation basins -- 7.4.5.1 Solids contact blanket clarifiers -- 7.4.6 Transfer of flocculated water -- 7.5 References -- Chapter 8: Testing and control of coagulation and flocculation -- 8.1 Introduction -- 8.2 Optimizing Primary Coagulant Type, Dosage and PH -- 8.2.1 General -- 8.2.2 Apparatus -- 8.2.3 Chemical solutions -- 8.2.4 Criteria describing process performance -- 8.2.5 Jar test procedure -- 8.2.6 Analysis of results -- 8.3 Using the Jar Test to Evaluate Settling -- 8.4 Evaluating Flocculant Aids -- 8.4.1 General -- 8.4.2 Initial choice of flocculant aid -- 8.4.3 Preparation of polyelectrolyte solutions -- 8.4.4 Experimental procedure -- 8.5 Evaluating Sludge Conditioners -- 8.5.1 General -- 8.5.2 Experimental procedures -- 8.6 Optimizing Flocculation Parameters -- 8.6.1 General -- 8.6.2 Apparatus -- 8.6.3 Experimental procedure -- 8.6.4 Analysis of data -- 8.7 Control Systems for Coagulation -- 8.7.1 Introduction -- 8.7.2 Electrokinetic measurements -- 8.7.2.1 Electrophoresis measurements -- 8.7.2.2 Streaming current measurements -- 8.7.2.3 Colloid titration -- 8.7.3 Monitoring floc formation -- 8.7.4 Data driven control systems -- 8.8 References -- Appendix A: Turbidity and its measurement -- A.1 Introduction -- A.2 The Advantages of Turbidity Measurements -- A.3 Turbidity as Surrogate for Particle Concentrations -- A.4 Principles of Turbidity Measurement -- A.5 Turbidity Instruments -- A.6 Instrument Calibration.
A.7 Techniques for Accurate Turbidity Measurements.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Copyright -- Contents -- Preface -- Chapter 1: Introduction -- 1.1 General -- 1.2 Stability and Destabilization -- 1.3 Definitions -- 1.4 Performance Criteria -- 1.5 Summary -- 1.6 References -- Chapter 2: Colloids and interfaces -- 2.1 Introduction -- 2.2 Origin of Surface Charge -- 2.3 Effect of Surface Charge -- 2.4 Adsorption -- 2.5 Inner Part of Electrical Double Layer -- 2.6 Diffuse Part of Electrical Double Layer -- 2.6.1 Assumptions -- 2.6.2 Distribution of potential with distance from the charged surface -- 2.6.3 Thickness of double layer -- 2.6.4 Effect of ionic strength on double layer -- 2.6.5 Effect of nature of counter ions -- 2.7 Stern's Model of Complete Double Layer -- 2.8 Colloid Stability in Terms of the Double Layer -- 2.8.1 Energy of interaction between particles -- 2.8.2 Theoretical optimal concentration of electrolyte required for destabilization -- 2.8.3 Schulze-Hardy rule -- 2.9 Electrokinetic Measurements -- 2.10 References -- Chapter 3: Coagulants -- 3.1 Introduction -- 3.2 Metal Coagulants -- 3.2.1 Commonly used metal coagulants -- 3.2.1.1 Aluminum sulfate -- 3.2.1.2 Acidified aluminum sulfate (Acid alum) -- 3.2.1.3 Aluminum chloride -- 3.2.1.4 Sodium aluminate -- 3.2.1.5 Ferric sulfate -- 3.2.1.6 Ferrous sulfate -- 3.2.1.7 Chlorinated ferrous sulfate -- 3.2.1.8 Ferric chloride -- 3.2.1.9 Prepolymerized aluminum and iron coagulants -- 3.2.1.9.1 Aluminum chlorohydrate -- 3.2.1.9.2 Polyaluminum chloride -- 3.2.1.9.3 Polyaluminum silicate sulfate and polyaluminum silicate chloride -- 3.2.1.9.4 Polymerized ferric and blended aluminum-ferric coagulants -- 3.2.1.9.5 Handling of pre-polymerized coagulants -- 3.2.1.10 Preparation and feeding of coagulant products -- 3.2.1.11 Contamination of commercial chemicals -- 3.2.2 Chemistry of metal coagulants -- 3.2.2.1 Hydration and stepwise substitution reactions.

3.2.2.2 Alkalinity consumption by metal coagulants -- 3.2.2.3 Stability of metal-ion hydrolysis species -- 3.2.2.4 Average coordination number -- 3.2.2.5 Species distribution during destabilization -- 3.3 Polymers -- 3.3.1 General -- 3.3.2 Activated silica -- 3.3.3 Natural polyelectrolytes -- 3.3.3.1 Seeds from the moringa oleifera tree -- 3.3.3.2 Starches -- 3.3.3.3 Guar gums -- 3.3.3.4 Tannins -- 3.3.3.5 Chitosan -- 3.3.3.6 Sodium alginate -- 3.3.4 Synthetic polymers -- 3.3.4.1 Structure of synthetic polyelectrolytes -- 3.3.4.2 Charge density and molecular weight -- 3.3.4.3 Forms of polymer -- 3.3.4.3.1 Dry polymers -- 3.3.4.3.2 Emulsion polymers -- 3.3.4.3.3 Mannich polymers -- 3.3.4.3.4 Solution polymers -- 3.3.4.4 Preparation of synthetic polymer solutions -- 3.3.4.5 Toxicity of synthetic polyelectrolytes -- 3.4 References -- Chapter 4: Treatment with metal coagulants -- 4.1 Introduction -- 4.2 Destabilization of Hydrophobic Colloids -- 4.2.1 Extent of hydrolysis and adsorption -- 4.2.2 Effect of coagulant dosage -- 4.2.3 Effect of colloid concentration -- 4.2.4 Effect of pH -- 4.2.4.1 General -- 4.2.4.2 pH 1.0 -- 4.2.4.3 pH 2.0 -- 4.2.4.4 pH 3.0 to 5.0 -- 4.2.4.5 pH 6.0 to 9.0 -- 4.2.4.6 Further considerations -- 4.3 Destabilization of Hydrophilic Colloids -- 4.4 Removal of Natural Organic Matter -- 4.4.1 Organic color -- 4.4.1.1 Nature of organic color -- 4.4.1.2 Classification of organic color -- 4.4.1.3 Disadvantages of organic color in water supplies -- 4.4.1.4 Measurement of color -- 4.4.1.5 Destabilization of organic color with metal coagulants -- 4.4.2 Enhanced coagulation -- 4.4.2.1 Effectiveness of metal coagulants -- 4.4.2.2 Mechanisms of NOM removal with metal coagulants -- 4.4.2.3 Predictive models for enhanced coagulation -- 4.4.2.4 Importance of jar tests -- 4.4.2.5 Impacts of enhanced coagulation.

4.5 Algae Removal and Harvesting -- 4.6 Pathogen Removal -- 4.6.1 Removal of Giardia and Cryptosporidium -- 4.6.2 Virus removal -- 4.7 Effect of Anions -- 4.7.1 General -- 4.7.2 Effect of sulfate -- 4.7.3 Effect of phosphate -- 4.8 Chemical Phosphorus Removal in Wastewater Treatment -- 4.8.1 General -- 4.8.2 Mechanisms of chemical phosphorus removal -- 4.8.2.1 Simultaneous phosphorus precipitation -- 4.8.2.2 Sequential phosphorus precipitation -- 4.8.3 Applications of chemical phosphorus removal -- 4.8.3.1 Alternative methods of phosphorus precipitation -- 4.9 Dissolved Organic Nitrogen (DON) Removal in Wastewater Treatment -- 4.9.1 General -- 4.9.2 Characteristics of effluent DON -- 4.9.3 Impacts of effluent DON -- 4.9.4 Measurement of DON -- 4.9.5 Strategies for DON removal -- 4.9.5.1 Enhanced coagulation -- 4.9.5.2 Impacts of DON removal on phosphorus and other constituents -- 4.9.5.3 Solid-liquid separation technology -- 4.9.5.4 Other approaches for DON removal -- 4.10 Wastewater Treatment by Coagulation and Chemically Enhanced Primary Treatment, CEPT -- 4.10.1 Dependence of CEPT removals on wastewater characteristics -- 4.10.2 Case studies of CEPT -- 4.10.3 Parameters for CEPT control -- 4.10.4 Degree of flocculation required for CEPT -- 4.11 Activated Sludge Bulking and Foaming Control and Enhanced Bioflocculation -- 4.12 Inorganics Removal -- 4.12.1 Arsenic removal -- 4.12.2 Copper removal -- 4.12.3 Fluoride removal -- 4.12.4 Manganese removal -- 4.13 Staged Coagulation and Sequencing -- 4.14 Effects of Preozonation -- 4.15 Effects of Temperature -- 4.16 Residual Aluminum -- 4.17 References -- Chapter 5: Treatment with polymers -- 5.1 Introduction -- 5.2 Mechanisms of Destabilization -- 5.2.1 General -- 5.2.2 The bridging mechanism -- 5.2.2.1 Dispersion in the suspension -- 5.2.2.2 Adsorption at the solid-liquid interface.

5.2.2.3 Compression of adsorbed chains -- 5.2.2.4 Bridge formation -- 5.2.3 The electrostatic patch mechanism -- 5.3 Polyelectrolytes as Primary Coagulants -- 5.3.1 General -- 5.3.2 Turbidity removal using polyelectrolytes -- 5.3.3 Organics removal using polyelectrolytes -- 5.3.4 Algae removal and harvesting using polyelectrolytes -- 5.3.5 Pathogen removal using polyelectrolytes -- 5.3.6 Wastewater treatment by coagulation with polyelectrolytes and CEPT -- 5.3.7 Activated sludge bulking and foaming control and enhanced bioflocculation -- 5.4 Polyelectrolytes as Flocculant Aids -- 5.4.1 Polymers as filter aids -- 5.5 Polymers as Sludge Conditioners -- 5.6 References -- Chapter 6: Rapid mixing -- 6.1 Introduction -- 6.2 Requirements for Rapid Mixing Devices -- 6.2.1 General -- 6.2.2 Comparison of back-mix and plug-flow reactors -- 6.2.3 Velocity gradient requirements -- 6.2.4 Rapid mixer retention time -- 6.2.5 Tapered rapid mix velocity gradient -- 6.2.6 Coagulant feed concentration -- 6.2.7 Sequence of chemical addition -- 6.3 Design of Rapid Mixing Devices -- 6.3.1 General -- 6.3.2 Backmix reactors -- 6.3.3 In-line mixers without controlled velocity gradient -- 6.3.3.1 Pipe bend -- 6.3.3.2 Sudden expansion within a pipe -- 6.3.3.3 Orifice plate within a pipe -- 6.3.3.4 Diffuser grids in channel -- 6.3.3.5 Hydraulic jump in channel -- 6.3.4 In-line mixers with controlled velocity gradient -- 6.4 References -- Chapter 7: Flocculation -- 7.1 Introduction -- 7.2 Perikinetic Flocculation -- 7.3 Orthokinetic Flocculation -- 7.3.1 Theoretical development -- 7.3.2 Working equation -- 7.3.3 Flocculation reactors in series -- 7.3.4 Adequacy of G and GT as design parameters -- 7.3.5 Experimental determination of flocculation parameters -- 7.3.5.1 Inconstancy of KB -- 7.4 Design of Flocculation Basins -- 7.4.1 General.

7.4.2 Types of flocculation chambers and devices -- 7.4.2.1 Baffled chambers -- 7.4.2.2 Granular media beds -- 7.4.2.3 Other hydraulic flocculators -- 7.4.2.4 Diffused air -- 7.4.2.5 Rotating blades -- 7.4.2.6 Reciprocating blades -- 7.4.2.7 Start-up of flocculation devices -- 7.4.3 Short circuiting in flocculation reactors -- 7.4.4 Compartmentalization -- 7.4.5 Combined flocculation - sedimentation basins -- 7.4.5.1 Solids contact blanket clarifiers -- 7.4.6 Transfer of flocculated water -- 7.5 References -- Chapter 8: Testing and control of coagulation and flocculation -- 8.1 Introduction -- 8.2 Optimizing Primary Coagulant Type, Dosage and PH -- 8.2.1 General -- 8.2.2 Apparatus -- 8.2.3 Chemical solutions -- 8.2.4 Criteria describing process performance -- 8.2.5 Jar test procedure -- 8.2.6 Analysis of results -- 8.3 Using the Jar Test to Evaluate Settling -- 8.4 Evaluating Flocculant Aids -- 8.4.1 General -- 8.4.2 Initial choice of flocculant aid -- 8.4.3 Preparation of polyelectrolyte solutions -- 8.4.4 Experimental procedure -- 8.5 Evaluating Sludge Conditioners -- 8.5.1 General -- 8.5.2 Experimental procedures -- 8.6 Optimizing Flocculation Parameters -- 8.6.1 General -- 8.6.2 Apparatus -- 8.6.3 Experimental procedure -- 8.6.4 Analysis of data -- 8.7 Control Systems for Coagulation -- 8.7.1 Introduction -- 8.7.2 Electrokinetic measurements -- 8.7.2.1 Electrophoresis measurements -- 8.7.2.2 Streaming current measurements -- 8.7.2.3 Colloid titration -- 8.7.3 Monitoring floc formation -- 8.7.4 Data driven control systems -- 8.8 References -- Appendix A: Turbidity and its measurement -- A.1 Introduction -- A.2 The Advantages of Turbidity Measurements -- A.3 Turbidity as Surrogate for Particle Concentrations -- A.4 Principles of Turbidity Measurement -- A.5 Turbidity Instruments -- A.6 Instrument Calibration.

A.7 Techniques for Accurate Turbidity Measurements.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.