ORPP logo
Image from Google Jackets

An Introduction to Plant Immunity.

By: Contributor(s): Material type: TextTextPublisher: Sharjah : Bentham Science Publishers, 2021Copyright date: ©2021Edition: 1st edDescription: 1 online resource (255 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781681088020
Subject(s): Genre/Form: Additional physical formats: Print version:: An Introduction to Plant ImmunityDDC classification:
  • 632.3
LOC classification:
  • SB750 .B685 2021
Online resources:
Contents:
Cover -- Title -- Copyright -- End User License Agreement -- Contents -- Foreword -- Preface -- Acknowledgements -- Dedication -- Introduction -- Plant Pathogens and Plant Pests -- INTRODUCTION -- 1. SUBCELLULAR PATHOGENS -- 1.1. Viruses -- 1.2. Viroids -- 2. CELLULAR PATHOGENS -- 2.1. Mycoplasmas (also called Mollicutes) -- a. Phytoplasmas -- b. Spiroplasmas -- 2.2. Bacteria -- 2.3. Fungi -- 2.4. Oomycetes -- 2.5. Nematodes -- 2.6. Parasitic Plants -- 3. ARTHROPODS -- 3.1. Insects -- 3.2. Mites -- 4. THE CONCEPT OF HOST RANGE -- CONCLUSION -- Plant Diseases -- INTRODUCTION -- 1. DEFINITION OF A PLANT DISEASE -- 2. CLASSIFICATION OF PLANT DISEASES -- 2.1. Parasitic (Biotic) Diseases -- 2.2. Noninfectious (Abiotic) Diseases -- 3. ECONOMIC IMPACT OF PLANT DISEASES -- 3.1. Quantitative Effect on Production -- 3.2. Effect on Product Quality -- 4. DIAGNOSIS AND IDENTIFICATION OF DISEASES -- 4.1. Diagnosis Based on Symptoms, Landscape, and Agricultural History -- a. Symptoms -- b. The Agricultural Landscape and History -- 4.2. Detection and Identification of Pathogens -- a. Methods Based on Morphological Observations -- b. Methods Based on Biochemical Markers -- c. Serological/Immunological-Based Detection Systems -- d. Methods Based on Molecular Markers -- 5. MOLECULAR HOST-PATHOGEN DIALOGUE -- 5.1. Compatible Reaction -- 5.2. Incompatible Reaction -- a. Non-Host Resistance 5 -- b. Horizontal Resistance6 -- c. Vertical Resistance7 -- 6. METHODS OF CONTROLLING PATHOGENS AND PESTS -- 6.1. Phytosanitary Regulations -- 6.2. Control by Cultural Practices -- 6.3. Chemical Control -- 6.4. Physical Control -- 6.5. Biological Control -- a. The Strategy of Antagonistic Organisms -- b. The Strategy of Secondary Plants -- 6.6. Genetic Resistance -- 6.7. Integrated Pest Management (IPM) -- CONCLUSION -- Plant Immunity: An Overview -- INTRODUCTION.
1. COEVOLUTION OF PLANT DEFENSE AND PATHOGEN ATTACK MECHANISMS: THE ZIGZAG MODEL -- 2. COMPONENTS OF PLANT IMMUNITY -- 2.1. Innate Immunity -- 2.2. Acquired Resistance -- 2.3. Host Versus Nonhost Resistance -- a. Nonhost Resistance -- b. Host Resistance -- 3. CONCEPTS OF AVOIDANCE, RESISTANCE AND TOLERANCE -- 4. COMPARISON BETWEEN IMMUNE SYSTEMS IN PLANTS AND ANIMALS -- a. Non-specific Immunity (Plants vs. Animals) -- b. Specific Immunity (Plants vs. Animals) -- c. Immune Memory (Plants vs. animals) -- d. Programmed Cell Death (apoptosis) (Plants vs. animals) -- CONCLUSION -- Passive Defenses -- INTRODUCTION -- 1. PRE-EXISTING MECHANICAL DEFENSES -- 2. PRE-EXISTING BIOCHIMICAL DEFENSES -- 2.1. Phenolic Compounds -- 2.2. Terpenoids -- 2.3. Alkaloids -- 2.4. Phytoanticipins -- 2.5. Nutrient Deprivation -- CONCLUSION -- Basal or Nonspecific Plant Defense -- INTRODUCTION -- 1. PASSIVE (CONSTITUTIVE) DEFENSES -- 2. ACTIVE (INDUCIBLE) DEFENSES -- 2.1. Development of the Concept of PAMP from that of Elicitors -- 2.2. Generic and Conserved Nature of PAMPs -- 2.3. Pattern Recognition Receptors (PRRs) -- 2.4. Popular Models of PTI in Plants -- 2.4.1. Flagellin-Induced Resistance -- 2.4.2. Elongation Factor (Ef-Tu)-Induced Basal Resistance -- 3. HETEROLOGOUS EXPRESSION OF PRR GENES -- CONCLUSION -- Pathogen Race-Specific Resistance -- INTRODUCTION -- 1. THE FLOR MODEL -- 2. PATHOGEN EFFECTORS -- 3. PLANT RESISTANCE (R) GENES -- 4. ELEMENTS OF DIFFERENTIATION BETWEEN PTI AND ETI -- CONCLUSION -- Acquired Resistance and Elicitors of Natural Plant Defense Mechanisms -- INTRODUCTION -- 1. ACQUIRED RESISTANCE -- 1.1. Systemic Acquired Resistance (SAR) -- 1.2. Induced Systemic Resistance (ISR) -- 1.3. Metabolic Changes Associated with Induced Resistance -- 2. ELICITORS OF NATURAL PLANT DEFENSE MECHANISMS. CAN PLANTS BE IMMUNIZED? -- 2.1. Definition of an NDS.
2.2. Advantages and Disadvantages of Using NDSs -- CONCLUSION -- Quantitative Resistance -- INTRODUCTION -- 1. MOLECULAR MECHANISMS ASSOCIATED WITH QUANTITATIVE IMMUNITY -- 2. BREEDING FOR QUANTITATIVE RESISTANCE -- 3. SPECIFICITY OF QTLS -- 4. RELATIONSHIP BETWEEN GENES, PROTEINS, METABOLITES AND QTL -- 5. MOLECULAR MARKERS ASSOCIATED WITH QTLS -- 6. DURABILITY OF QUANTITATIVE RESISTANCES -- CONCLUSION -- Molecular Models of Specific Host-Pathogen Recognition -- INTRODUCTION -- 1. « RECEPTOR - LIGAND » MODEL -- 2. THE « GUARD » MODEL -- 3. THE « DECOY » MODEL -- 4. INTEGRATED DECOY MODEL (NLR-ID MODEL) -- 4.1. A Remarkable Diversity of Non-Canonical Integrated Sequences in NLRs -- 4.2. Elucidation of the Function of NLR-IDs -- 5. SENSOR NLRS (SNLRS) AND HELPER NLRS (HNLRS) -- CONCLUSION -- PRRs and WAKs: PAMPs and DAMPs Detectors -- INTRODUCTION -- 1. PATTERN-RECOGNITION RECEPTORS (PRRS) -- 1.1. An Overview: Nature of PAMPs and Biochemical Structure of PRRs -- 1.2. Best Known Examples of Bacterial and Fungal PAMPs and their Cognate Pattern Recognition Receptors -- 1.3. Focus on FLS2-flg22 Interaction -- 2. A PARTICULAR PRR CLASS: WALL-ASSOCIATED KINASES (WAKS), DAMPS RECEPTORS -- 2.1. Nature of DAMPs -- 2.2. Example of OGs - WAK1 interaction -- 3. PLANT LECTIN RECEPTORS -- CONCLUSION -- NLRs: Detectors of Pathogen Effectors -- INTRODUCTION -- 1. THE MAIN STRUCTURAL DOMAINS OF NBS-LRR PROTEINS -- 1.1. The C-terminal Region -- 1.1.1. Leucine-Rich Repeats (LRR) Domain -- 1.1.2. Other Domains of the C-Terminal Region -- 1.2. The Central NOD Region -- 1.3. N-Terminal Region -- 1.3.1. TIR (Toll Interleukin Receptor) Domain -- 1.3.2. Coiled-Coil (CC) Domain -- 1.3.3. Other Domains of the N-terminal Region -- 2. GENOMIC ORGANIZATION OF NBS-LRR LOCI -- 2.1. Simple Locus Organized in Allelic Series -- 2.2. Complex Clusters of Homologous Resistance Genes.
2.3. Complex Clusters of non Homologous Resistance Genes -- 3. EVOLUTION OF THE NBS-LRR GENE FAMILY -- 3.1. The Crucial Role of Duplication in the Evolution of R Genes -- 3.2. Diversification of Resistance Genes by Transposable Elements -- CONCLUSION -- Molecular Classification of Plant Resistance Genes -- INTRODUCTION -- 1. WHY STUDY R GENES? -- 2. CLASSES OF PLANT DISEASE RESISTANCE GENES BASED ON STRUCTURAL FEATURES -- 2.1. The Two Classes of Coiled Coil-Nucleotide Binding Site-Leucine Rich Repeat (CNL) and Toll-Interleukin Receptor-Nucleotide Binding Site-Leucine Rich Repeat (TNL) -- 2.2. The two classes of Receptor-Like Protein (RLP) and Receptor-Like Kinase (RLK)4 -- 2.3. Superclass of Oth-R-Genes -- a. Example of Genes Encoding Toxin Reductases -- b. Example of Genes Encoding Proteins With CC Domain and a Transmembrane Domain -- c. Example of Genes Encoding a Cytoplasmic Protein Kinase -- 3. CELLULAR LOCALIZATION OF RESISTANCE PROTEINS -- 4. POSITIONAL CLONING OF PLANT RESISTANCE (R) GENES -- CONCLUSION -- Strategies and Mechanisms for Plant Resistance Protein Function -- INTRODUCTION -- 1. STRATEGY (1): PERCEPTION -- 1.1. Mode (1.1): Extracellular Perception -- a. Mechanism 1: Direct Extracellular Perception -- b. Mechanism 2: Indirect Extracellular Perception -- 1.2. Mode (1.2): Intracellular Perception -- c. Mechanism 3: Direct Intracellular Recognition -- d. Mechanism 4: Indirect Intracellular Recognition -- e. Mechanism 5: NLR-IDs -- 1.3. Mode (1.3) -- f. Mechanism 6: Executor Genes -- 2. STRATEGY (2): LOSS OF SUSCEPTIBILITY -- [g. Mechanism 7: Active Loss of Susceptibility] -- g. Mechanism 7: Active Loss of Susceptibility -- h. Mechanism 8: Passive Loss of Susceptibility due to mutation in a host component targeted by the pathogen -- i. Mechanism 9: Passive Loss of Susceptibility by Host Reprogramming -- CONCLUSION.
Signal Transduction Pathways Activated During Plant Resistance to Pathogens -- INTRODUCTION -- 1. PHYTOHORMONE SIGNALING -- 1.1. Salicylic Acid (SA) -- 1.2. Jasmonic Acid (JA) and Ethylene -- 2. CALCIUM SIGNALING -- 3. MAPK CASCADES -- 4. THE OXYDATIVE BURST -- 5. MAIN PATHWAYS TRIGGERED DURING RESISTANCE TO BACTERIA -- 6. MAIN PATHWAYS TRIGGERED DURING RESISTANCE TO BIOTROPHIC FUNGI -- 7. MAIN PATHWAYS TRIGGERED DURING RESISTANCE TO NECROTROPHIC FUNGI -- 8. SIGNALING CROSSTALK BETWEEN PLANT ABIOTIC AND BIOTIC STRESS RESPONSES -- CONCLUSION -- Transcriptional Reprogramming in Plant Defense -- INTRODUCTION -- 1. MAJOR TRANSCRIPTION FACTOR FAMILIES ACTIVE IN PLANT IMMUNITY -- 1.1. WRKY Transcription Factors -- 1.2. NAC Transcription Factors -- 1.3. MYB Transcription Factors -- 1.4. AP2 / EREBP Transcription Factors -- 1.5. bZIP Transcription Factors -- 1.6. NPR1 Transcription Factors -- 2. REGULATION OF TRANSCRIPTIONAL COMPLEXES -- 2.1. Direct Regulation of Transcriptional Complexes by Transcription Factors -- 2.2. Regulation of Transcriptional Complexes by MAPK Cascades -- 2.3. Regulation of Transcriptional Complexes by Ca2+ signaling -- CONCLUSION -- Insights into the Role of Epigenetics in Controlling Disease Resistance in Plants -- INTRODUCTION -- 1. DNA METHYLATION -- 1.1. Reduced DNA Methylation and Defense-Related Genes Priming -- 1.2. Plant Methylation Changes During Pathogen Infection -- 1.3. Transgenerational Epigenetically Acquired Resistance -- 2. TRANSPOSABLE ELEMENTS -- 3. ROLE OF NON-CODING RNAS IN EPIGENETIC CONTROL -- CONCLUSION -- Plant Defense Gene Expression and Physiological Response -- INTRODUCTION -- 1. HYPERSENSIBLE RESPONSE (HR) -- 2. ENZYMES AND ENZYME INHIBITORS -- 3. DEFENSINS -- 4. PHYTOALEXINS -- 5. PATHOGENESIS-RELATED PROTEINS (PRS) -- CONCLUSION -- Contribution of Genomics to the Study of Resistance in Cultivated Plants.
INTRODUCTION.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title -- Copyright -- End User License Agreement -- Contents -- Foreword -- Preface -- Acknowledgements -- Dedication -- Introduction -- Plant Pathogens and Plant Pests -- INTRODUCTION -- 1. SUBCELLULAR PATHOGENS -- 1.1. Viruses -- 1.2. Viroids -- 2. CELLULAR PATHOGENS -- 2.1. Mycoplasmas (also called Mollicutes) -- a. Phytoplasmas -- b. Spiroplasmas -- 2.2. Bacteria -- 2.3. Fungi -- 2.4. Oomycetes -- 2.5. Nematodes -- 2.6. Parasitic Plants -- 3. ARTHROPODS -- 3.1. Insects -- 3.2. Mites -- 4. THE CONCEPT OF HOST RANGE -- CONCLUSION -- Plant Diseases -- INTRODUCTION -- 1. DEFINITION OF A PLANT DISEASE -- 2. CLASSIFICATION OF PLANT DISEASES -- 2.1. Parasitic (Biotic) Diseases -- 2.2. Noninfectious (Abiotic) Diseases -- 3. ECONOMIC IMPACT OF PLANT DISEASES -- 3.1. Quantitative Effect on Production -- 3.2. Effect on Product Quality -- 4. DIAGNOSIS AND IDENTIFICATION OF DISEASES -- 4.1. Diagnosis Based on Symptoms, Landscape, and Agricultural History -- a. Symptoms -- b. The Agricultural Landscape and History -- 4.2. Detection and Identification of Pathogens -- a. Methods Based on Morphological Observations -- b. Methods Based on Biochemical Markers -- c. Serological/Immunological-Based Detection Systems -- d. Methods Based on Molecular Markers -- 5. MOLECULAR HOST-PATHOGEN DIALOGUE -- 5.1. Compatible Reaction -- 5.2. Incompatible Reaction -- a. Non-Host Resistance 5 -- b. Horizontal Resistance6 -- c. Vertical Resistance7 -- 6. METHODS OF CONTROLLING PATHOGENS AND PESTS -- 6.1. Phytosanitary Regulations -- 6.2. Control by Cultural Practices -- 6.3. Chemical Control -- 6.4. Physical Control -- 6.5. Biological Control -- a. The Strategy of Antagonistic Organisms -- b. The Strategy of Secondary Plants -- 6.6. Genetic Resistance -- 6.7. Integrated Pest Management (IPM) -- CONCLUSION -- Plant Immunity: An Overview -- INTRODUCTION.

1. COEVOLUTION OF PLANT DEFENSE AND PATHOGEN ATTACK MECHANISMS: THE ZIGZAG MODEL -- 2. COMPONENTS OF PLANT IMMUNITY -- 2.1. Innate Immunity -- 2.2. Acquired Resistance -- 2.3. Host Versus Nonhost Resistance -- a. Nonhost Resistance -- b. Host Resistance -- 3. CONCEPTS OF AVOIDANCE, RESISTANCE AND TOLERANCE -- 4. COMPARISON BETWEEN IMMUNE SYSTEMS IN PLANTS AND ANIMALS -- a. Non-specific Immunity (Plants vs. Animals) -- b. Specific Immunity (Plants vs. Animals) -- c. Immune Memory (Plants vs. animals) -- d. Programmed Cell Death (apoptosis) (Plants vs. animals) -- CONCLUSION -- Passive Defenses -- INTRODUCTION -- 1. PRE-EXISTING MECHANICAL DEFENSES -- 2. PRE-EXISTING BIOCHIMICAL DEFENSES -- 2.1. Phenolic Compounds -- 2.2. Terpenoids -- 2.3. Alkaloids -- 2.4. Phytoanticipins -- 2.5. Nutrient Deprivation -- CONCLUSION -- Basal or Nonspecific Plant Defense -- INTRODUCTION -- 1. PASSIVE (CONSTITUTIVE) DEFENSES -- 2. ACTIVE (INDUCIBLE) DEFENSES -- 2.1. Development of the Concept of PAMP from that of Elicitors -- 2.2. Generic and Conserved Nature of PAMPs -- 2.3. Pattern Recognition Receptors (PRRs) -- 2.4. Popular Models of PTI in Plants -- 2.4.1. Flagellin-Induced Resistance -- 2.4.2. Elongation Factor (Ef-Tu)-Induced Basal Resistance -- 3. HETEROLOGOUS EXPRESSION OF PRR GENES -- CONCLUSION -- Pathogen Race-Specific Resistance -- INTRODUCTION -- 1. THE FLOR MODEL -- 2. PATHOGEN EFFECTORS -- 3. PLANT RESISTANCE (R) GENES -- 4. ELEMENTS OF DIFFERENTIATION BETWEEN PTI AND ETI -- CONCLUSION -- Acquired Resistance and Elicitors of Natural Plant Defense Mechanisms -- INTRODUCTION -- 1. ACQUIRED RESISTANCE -- 1.1. Systemic Acquired Resistance (SAR) -- 1.2. Induced Systemic Resistance (ISR) -- 1.3. Metabolic Changes Associated with Induced Resistance -- 2. ELICITORS OF NATURAL PLANT DEFENSE MECHANISMS. CAN PLANTS BE IMMUNIZED? -- 2.1. Definition of an NDS.

2.2. Advantages and Disadvantages of Using NDSs -- CONCLUSION -- Quantitative Resistance -- INTRODUCTION -- 1. MOLECULAR MECHANISMS ASSOCIATED WITH QUANTITATIVE IMMUNITY -- 2. BREEDING FOR QUANTITATIVE RESISTANCE -- 3. SPECIFICITY OF QTLS -- 4. RELATIONSHIP BETWEEN GENES, PROTEINS, METABOLITES AND QTL -- 5. MOLECULAR MARKERS ASSOCIATED WITH QTLS -- 6. DURABILITY OF QUANTITATIVE RESISTANCES -- CONCLUSION -- Molecular Models of Specific Host-Pathogen Recognition -- INTRODUCTION -- 1. « RECEPTOR - LIGAND » MODEL -- 2. THE « GUARD » MODEL -- 3. THE « DECOY » MODEL -- 4. INTEGRATED DECOY MODEL (NLR-ID MODEL) -- 4.1. A Remarkable Diversity of Non-Canonical Integrated Sequences in NLRs -- 4.2. Elucidation of the Function of NLR-IDs -- 5. SENSOR NLRS (SNLRS) AND HELPER NLRS (HNLRS) -- CONCLUSION -- PRRs and WAKs: PAMPs and DAMPs Detectors -- INTRODUCTION -- 1. PATTERN-RECOGNITION RECEPTORS (PRRS) -- 1.1. An Overview: Nature of PAMPs and Biochemical Structure of PRRs -- 1.2. Best Known Examples of Bacterial and Fungal PAMPs and their Cognate Pattern Recognition Receptors -- 1.3. Focus on FLS2-flg22 Interaction -- 2. A PARTICULAR PRR CLASS: WALL-ASSOCIATED KINASES (WAKS), DAMPS RECEPTORS -- 2.1. Nature of DAMPs -- 2.2. Example of OGs - WAK1 interaction -- 3. PLANT LECTIN RECEPTORS -- CONCLUSION -- NLRs: Detectors of Pathogen Effectors -- INTRODUCTION -- 1. THE MAIN STRUCTURAL DOMAINS OF NBS-LRR PROTEINS -- 1.1. The C-terminal Region -- 1.1.1. Leucine-Rich Repeats (LRR) Domain -- 1.1.2. Other Domains of the C-Terminal Region -- 1.2. The Central NOD Region -- 1.3. N-Terminal Region -- 1.3.1. TIR (Toll Interleukin Receptor) Domain -- 1.3.2. Coiled-Coil (CC) Domain -- 1.3.3. Other Domains of the N-terminal Region -- 2. GENOMIC ORGANIZATION OF NBS-LRR LOCI -- 2.1. Simple Locus Organized in Allelic Series -- 2.2. Complex Clusters of Homologous Resistance Genes.

2.3. Complex Clusters of non Homologous Resistance Genes -- 3. EVOLUTION OF THE NBS-LRR GENE FAMILY -- 3.1. The Crucial Role of Duplication in the Evolution of R Genes -- 3.2. Diversification of Resistance Genes by Transposable Elements -- CONCLUSION -- Molecular Classification of Plant Resistance Genes -- INTRODUCTION -- 1. WHY STUDY R GENES? -- 2. CLASSES OF PLANT DISEASE RESISTANCE GENES BASED ON STRUCTURAL FEATURES -- 2.1. The Two Classes of Coiled Coil-Nucleotide Binding Site-Leucine Rich Repeat (CNL) and Toll-Interleukin Receptor-Nucleotide Binding Site-Leucine Rich Repeat (TNL) -- 2.2. The two classes of Receptor-Like Protein (RLP) and Receptor-Like Kinase (RLK)4 -- 2.3. Superclass of Oth-R-Genes -- a. Example of Genes Encoding Toxin Reductases -- b. Example of Genes Encoding Proteins With CC Domain and a Transmembrane Domain -- c. Example of Genes Encoding a Cytoplasmic Protein Kinase -- 3. CELLULAR LOCALIZATION OF RESISTANCE PROTEINS -- 4. POSITIONAL CLONING OF PLANT RESISTANCE (R) GENES -- CONCLUSION -- Strategies and Mechanisms for Plant Resistance Protein Function -- INTRODUCTION -- 1. STRATEGY (1): PERCEPTION -- 1.1. Mode (1.1): Extracellular Perception -- a. Mechanism 1: Direct Extracellular Perception -- b. Mechanism 2: Indirect Extracellular Perception -- 1.2. Mode (1.2): Intracellular Perception -- c. Mechanism 3: Direct Intracellular Recognition -- d. Mechanism 4: Indirect Intracellular Recognition -- e. Mechanism 5: NLR-IDs -- 1.3. Mode (1.3) -- f. Mechanism 6: Executor Genes -- 2. STRATEGY (2): LOSS OF SUSCEPTIBILITY -- [g. Mechanism 7: Active Loss of Susceptibility] -- g. Mechanism 7: Active Loss of Susceptibility -- h. Mechanism 8: Passive Loss of Susceptibility due to mutation in a host component targeted by the pathogen -- i. Mechanism 9: Passive Loss of Susceptibility by Host Reprogramming -- CONCLUSION.

Signal Transduction Pathways Activated During Plant Resistance to Pathogens -- INTRODUCTION -- 1. PHYTOHORMONE SIGNALING -- 1.1. Salicylic Acid (SA) -- 1.2. Jasmonic Acid (JA) and Ethylene -- 2. CALCIUM SIGNALING -- 3. MAPK CASCADES -- 4. THE OXYDATIVE BURST -- 5. MAIN PATHWAYS TRIGGERED DURING RESISTANCE TO BACTERIA -- 6. MAIN PATHWAYS TRIGGERED DURING RESISTANCE TO BIOTROPHIC FUNGI -- 7. MAIN PATHWAYS TRIGGERED DURING RESISTANCE TO NECROTROPHIC FUNGI -- 8. SIGNALING CROSSTALK BETWEEN PLANT ABIOTIC AND BIOTIC STRESS RESPONSES -- CONCLUSION -- Transcriptional Reprogramming in Plant Defense -- INTRODUCTION -- 1. MAJOR TRANSCRIPTION FACTOR FAMILIES ACTIVE IN PLANT IMMUNITY -- 1.1. WRKY Transcription Factors -- 1.2. NAC Transcription Factors -- 1.3. MYB Transcription Factors -- 1.4. AP2 / EREBP Transcription Factors -- 1.5. bZIP Transcription Factors -- 1.6. NPR1 Transcription Factors -- 2. REGULATION OF TRANSCRIPTIONAL COMPLEXES -- 2.1. Direct Regulation of Transcriptional Complexes by Transcription Factors -- 2.2. Regulation of Transcriptional Complexes by MAPK Cascades -- 2.3. Regulation of Transcriptional Complexes by Ca2+ signaling -- CONCLUSION -- Insights into the Role of Epigenetics in Controlling Disease Resistance in Plants -- INTRODUCTION -- 1. DNA METHYLATION -- 1.1. Reduced DNA Methylation and Defense-Related Genes Priming -- 1.2. Plant Methylation Changes During Pathogen Infection -- 1.3. Transgenerational Epigenetically Acquired Resistance -- 2. TRANSPOSABLE ELEMENTS -- 3. ROLE OF NON-CODING RNAS IN EPIGENETIC CONTROL -- CONCLUSION -- Plant Defense Gene Expression and Physiological Response -- INTRODUCTION -- 1. HYPERSENSIBLE RESPONSE (HR) -- 2. ENZYMES AND ENZYME INHIBITORS -- 3. DEFENSINS -- 4. PHYTOALEXINS -- 5. PATHOGENESIS-RELATED PROTEINS (PRS) -- CONCLUSION -- Contribution of Genomics to the Study of Resistance in Cultivated Plants.

INTRODUCTION.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.