Solving Transport Problems : Towards Green Logistics.
Material type:
- text
- computer
- online resource
- 9781119686767
- HD38.5 .S658 2020
Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface: Optimization of Green Transportation Problems: Fundamentals and Applications -- Acknowledgments -- 1. An Adaptive Large Neighborhood Search Heuristic for the Green Dial-a-Ride Problem -- 1.1. Introduction -- 1.2. Literature review -- 1.2.1. The Dial-a-Ride Problem -- 1.2.2. The green vehicle routing problem -- 1.3. Problem definition -- 1.4. An Adaptive Large Neighborhood Search for the G-DARP -- 1.4.1. Adaptive weight adjustment procedure -- 1.4.2. Removal and insertion operators -- 1.4.3. Local search operators -- 1.5. Computational experiments -- 1.5.1. Data and experimental setting -- 1.5.2. Parameters setting -- 1.5.3. Computational analysis -- 1.6. Conclusion -- Acknowledgments -- 1.7. References -- 2. Role of Green Technology Vehicles in Road Transportation Emissions - Case of the UK -- 2.1. Introduction -- 2.2. Alternative Fuel-Powered vehicles market -- 2.3. Electric vehicles - options and features -- 2.3.1. Battery relevance -- 2.3.2. Charging implications -- 2.3.3. Relevance of regenerative braking technology -- 2.3.4. Emissions -- 2.4. UK transport emissions and the impact of BEVs -- 2.5. Cost implications -- 2.6. Conclusion -- 2.7. References -- 3. Transport Pooling: Moving Toward Green Distribution -- 3.1. Introduction -- 3.2. Concepts of collaborative logistics -- 3.2.1. Definitions and issues -- 3.2.2. Forms of logistical collaboration -- 3.3. Pooling of physical flows between organizations -- 3.4. Literature review -- 3.4.1. Choice of articles -- 3.4.2. Analysis and discussion of the results -- 3.5. Proposal of pooling scenarios for the urban distribution of goods -- 3.6. Comparison of scenarios -- 3.6.1. Distances traveled -- 3.6.2. Greenhouse gas emissions -- 3.6.3. Distribution cost -- 3.6.4. Delivery time -- 3.6.5. Best scenario.
3.7. Proposal for a shared long-distance distribution model -- 3.8. Conclusion -- 3.9. References -- 4. A Ruin and Recreate Solution Method for a Lexicographic Vehicle Routing Problem Integrating Park-and-Loop and Car Sharing -- 4.1. Introduction -- 4.2. Literature review -- 4.3. Considered problem -- 4.4. Lexicographic approach -- 4.5. Solution method -- 4.6. Results -- 4.6.1. Walking -- 4.6.2. Electric kick scooter -- 4.7. Conclusion and future work -- 4.8. References -- 5. An Overview of the Recent Solution Approaches in the Green Vehicle Routing Problem -- 5.1. Introduction -- 5.2. Chronological progress of the literature on the GVRP -- 5.2.1. The Green-VRP -- 5.2.2. The Pollution-Routing Problem -- 5.3. Solution methodologies for the GVRP -- 5.3.1. Exact methods -- 5.3.2. Metaheuristics -- 5.3.3. Heuristics -- 5.4. Conclusion -- 5.5. References -- 6. Multi-Criteria Decision Aid for Green Modes of Crude Oil Transportation Using MACBETH: The Sfax Region Case -- 6.1. Introduction -- 6.2. State-of-the-art -- 6.2.1. Hazardous materials transportation integrated location and routing problem -- 6.2.2. Hazardous materials transportation risk assessment problem -- 6.2.3. Hazardous materials transportation network design problem -- 6.3. Real case: choice of crude oil transportation modal from the Sfax region to the Skhira port -- 6.3.1. Identification of the problem -- 6.3.2. Method for Measuring Attractiveness by a Categorical-Based Evaluation Technique (MACBETH) -- 6.3.3. Research methodology: MACBETH application -- 6.3.4. Results and discussions -- 6.4. Conclusion -- 6.5. References -- 7. Green Reverse Logistics: Case of the Vehicle Routing Problem with Delivery and Collection Demands -- 7.1. Introduction and significance -- 7.2. The Vehicle Routing Problem and its variants -- 7.2.1. The evolution of the Vehicle Routing Problem.
7.2.2. The Vehicle Routing Problem -- 7.2.3. VRP variants -- 7.3. The VRP with delivery and collection demand models -- 7.3.1. The VRP with Mixed Deliveries and Pickups -- 7.3.2. The VRP with Simultaneous Deliveries and Pickups -- 7.3.3. The VRP with Backhauls -- 7.3.4. The Multiple-Trip Vehicle Routing Problem with Backhauls -- 7.4. Studies in VRPB-related areas -- 7.4.1. Significance of the VRP models with delivery and collection demands -- 7.4.2. Ecological relevance of the VRP models -- 7.4.3. Computation of freight transport greenhouse gas emissions -- 7.4.4. Vehicle routing models directly focused on green transportation -- 7.4.5. Green VRP models -- 7.4.6. Electric vehicles modeling -- 7.5. Conclusion -- 7.6. References -- 8. An Improved DTC Induction Motor for Electric Vehicle Propulsion: An Intention to Provide a Comfortable Ride -- 8.1. Introduction -- 8.2. Several components of EV motor drive -- 8.3. An overview of induction motor control strategies -- 8.4. DTC strategies -- 8.4.1. Conventional DTC fundamentals -- 8.4.2. An improvement of DTC strategy: fixed torque switching frequency -- 8.5. Comparative study based on simulation results -- 8.5.1. Steady-state and transient behavior analysis -- 8.5.2. Performance criteria -- 8.5.3. Discussion -- 8.6. Conclusion -- 8.7. References -- 9. Optimization in Multilevel Green Transportation Problems with Electrical Vehicles -- 9.1. Introduction -- 9.2. Transportation problems with electric vehicles -- 9.2.1. Multilevel formulations -- 9.2.2. Summary review of the literature -- 9.3. Search techniques -- 9.3.1. Exact optimization techniques -- 9.3.2. Genetic algorithms -- 9.3.3. Imperialism competitive algorithm -- 9.3.4. Particle Swarm Optimization -- 9.3.5. Simulated annealing -- 9.3.6. Neighborhood search -- 9.3.7. Summary review of the literature -- 9.4. Tendencies and challenges.
9.5. Concluding remarks -- 9.6. References -- List of Authors -- Index -- Other titles from iSTE in Computer Engineering -- EULA.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.