Fluid Transport : Theory, Dynamics and Applications.
Material type:
- text
- computer
- online resource
- 9781611226768
- 532
- QC151 -- .F635 2011eb
Intro -- FLUID TRANSPORT: THEORY, DYNAMICS AND APPLICATIONS -- FLUID TRANSPORT: THEORY, DYNAMICS AND APPLICATIONS -- CONTENTS -- PREFACE -- Chapter 1 FLUIDODYNAMICS CHARACTERISTICS OF A VERTICAL GAS-SOLID AND LIQUID-SOLID FLOW -- ABSTRACT -- 1. INTRODUCTION -- 2. THEORETICAL BACKGROUND -- 2.1. Background of Hydrodynamic Models -- 2.2. A Study of the Models Parameters -- 2.2.1. Fluid-particle interphase drag coefficient -- 2.2.2. Fluid-wall and particle-wall friction -- 3. TRANSPORT MODELING -- 3.1. Fluidodinamics Model of Vertical Two-Phase Flow -- 3.1.1. Loading ratio of flow -- 4. APPLYING THE MODEL -- 4.1. Model Calculations -- 4.2. Applying the Model to Determination of Solids Wall Friction Coefficient -- 4.3. Fluidodynamics Characteristics of a Vertical Gas-Solid Flow -- 4.3.1. Flow regimes in vertical gas-solids flow -- 4.3.2. Model and model parameters -- 4.3.3. Applying the model to predict the basic fluidodynamics parameters of the vertical gas-solids flow -- 4.3.3.1. Prediction solids flowrate in the transport tube -- 4.3.3.2. Prediction of the pressure gradient in the transport tube -- 4.3.3.3. Indirect determination of solids-wall friction coefficient -- 4.4. Fluidodynamics Characteristics of a Vertical Liquid-Solid Flow -- 4.4.1. Flow regimes in vertical liquid-solids flow -- 4.4.2. Model and model parameters -- 4.4.3. Applying the model to predict the basic fluidodynamics parameters of the vertical liquid -solids flow -- 4.4.3.1. Prediction solids flowrate in the transport tube -- 4.4.3.2. Prediction pressure gradient in the transport tube -- 4.4.3.3. Indirect determination of solids-wall friction coefficient -- 4.5. Comparison of a Vertical Gas-Solid and Liquid-Solid Flow -- CONCLUSION -- NOMENCLATURE -- Greek Letters -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 2 NUMERICAL SIMULATION ON FLOWS PAST POROUS BLUFF BODIES -- ABSTRACT.
1. INTRODUCTION -- 2. NUMERICAL METHOD -- 2.1. Governing Equations -- 2.2. Numerical Techniques for Fluid-Porous Interface -- 2.3. Grid Independent Study and Validations -- 3. RESULTS AND DISCUSSION -- 3.1. Flow Pattern -- 3.2. Occurrence of Recirculating Wake -- 3.3. Geometrical Parameters of Recirculating Wake -- CONCLUSION -- REFERENCES -- Chapter 3 FLUID FLOW AND HEAT TRANSPORT: THEORY, NUMERICAL MODELING AND APPLICATIONS FOR THE FORMATION OF MINERAL DEPOSITS -- SUMMARY -- 1. THEORY -- 1.1. Physical Processes -- 1.1.1. Heat transport -- 1. Heat conduction -- 2. Heat convection -- 3. Thermal radiation -- 1.1.2. Fluid flow and driving forces -- 1. Topography -- 2. Buoyancy -- 3. Tectonic deformation -- 4. Sediment compaction -- 1.2. Governing Equations -- 1.2.1. The equation of fluid motion -- 1.2.2. The Equation of fluid mass -- 1.2.3. The equation of thermal energy conservation -- 1.2.4. Supplemental equations -- 1.3. Heat Transport in Fractured Porous Media: Analytical Solution for a Single Fracture -- 1.3.1. Governing equations -- 1.3.2. General transient solution -- 1.3.3. Steady state solution -- 1.3.4. Illustrative examples -- 2. NUMERICAL SIMULATION METHOD -- 2.1. Finite Element Method -- 2.2. The Galerkin Element Solutions of the Fluid and Energy Conservation Equations -- 3. RELATIVE IMPORTANCE OF TOPOGRAPHY AND BUOYANCY IN DRIVING GROUNDWATER FLOW -- 3.1. A 2-D Conceptual Model -- 3.2. Numerical Modeling Results -- 3.3. Discussions and Conclusions -- 4. APPLICATION EXAMPLES OF HYDROTHERMAL FLUID FLOW MODELING FOR ORE GENESIS -- 4.1. Buoyancy-driven Fluid Flow Associated with the Formation of Sedex-type Deposits -- 4.1.1. A 2-D conceptualized hydrological model -- 4.1.2. Numerical modeling results -- 4.1.3. Discussions and conclusions.
4.2. Tectonic Deformation-driven Fluid Flow Related to Ore Genesis in the Dachang District, Southern China -- 4.2.1. A 2-D conceptualized hydrological model -- .2.2. Governing equations and numerical scheme -- 4.2.3. Numerical modeling results -- 4.2.4. Conclusions -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 4 SIMULATION OF VELOCITY AND MASS TRANSPORT PROFILES IN A LABORATORY ELECTROLYSER USING COMPUTATIONAL FLUID DYNAMICS -- INTRODUCTION -- FLOW REGIME ASSESSMENT -- MODELLING THE FLOW PATTERN ALONG THE FM01-LC -- MASS TRANSPORT AND FLUID DYNAMICS -- PARTICLE IMAGING VELOCIMETRY -- CONCLUSIONS -- REFERENCES -- Chapter 5 COMPUTATIONAL SIMULATION OF INSTABILITY PHENOMENA ASSOCIATED WITH MASS AND ENERGY TRANSPORT THROUGH FLUID FLOW IN POROUS MEDIA -- ABSTRACT -- 1. INTRODUCTION -- 2. MATHEMATICAL MODEL OF THERMODYNAMIC INTABILITY PROBLEMS IN TWO DIMENSIONAL FLUID-SATURATED POROUS MEDIA -- 3. APPLICATION EXAMPLES OF THERMODYNAMIC INSTABILITY PROBLEMS IN TWO-DIMENSIONAL FLUID-SATURATED POROUS MEDIA -- 3.1. Layered Model without Faults -- 3.2. Layered Model with More Permeable Faults -- 3.3. Layered Model with Less Permeable Faults -- 4. MATHEMATICAL MODEL OF CHEMICAL-DISSOLUTION FRONT INTABILITY PROBLEMS IN TWO-DIMENSIONAL FLUID-SATURATED POROUS MEDIA -- 5. AN APPLICATION EXAMPLE OF CHEMICAL-DISSOLUTION FRONT INTABILITY PROBLEMS IN TWO-DIMENSIONAL FLUID-SATURATED POROUS MEDIA -- CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 6 THE DYNAMICS OF NMR - DIFFUSION DIFFERENTIAL EQUATION FOR QUALITATIVE ANALYSIS OF HEMODYNAMIC AND METABOLIC CHANGES IN BIOLOGICAL TISSUE -- ABSTRACT -- INTRODUCTION -- Mathematical Formulation -- 1. UNRESTRICTED DIFFUSION -- 1.1. Rectangular Geometry -- 1.2. Cylindrical Geometry -- 1.3. Spherical Geometry -- 2. RESTRICTED DIFFUSION -- 2.1. Rectangular Geometry -- 2.2. Cylindrical Geometry -- 2.3. Spherical Geometry.
CONCLUSION -- REFERENCES -- Chapter7COMPRESSIBILITYEFFECTSONPERISTALTICFLOWOFANON-NEWTONIANMAXWELLFLUIDTHROUGHANANNULUS -- Abstract -- 1.Introduction -- 2.FormulationoftheProblem -- 3.MethodofSolution -- 4.NumericalResultsandDiscussion -- References -- Chapter 8 MICROSCALE AND NANOSCALE THERMAL AND FLUID TRANSPORT PHENOMENA: RAPIDLY DEVELOPING RESEARCH FIELDS† -- REFERENCES -- Chapter 9 TRANSPORT CONTROL OF FLUID AND SOLUTES IN MICROCHANNELS USING AC FIELD AND SEMICONDUCTOR DIODES* -- ABSTRACT -- INTRODUCTION -- GOVERNING EQUATIONS FOR FLUID AND ANALYTE FLOW IN MICROCHANNELS -- SEMICONDUCTOR DIODE PUMPS AND MIXERS POWERED BY ALTERNATE CURRENT ELECTRIC FIELD -- CONCLUSIONS -- REFERENCES -- INDEX -- Blank Page.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.