Fluid Dynamics in Complex Fractured-Porous Systems.
Material type:
- text
- computer
- online resource
- 9781118877227
- 551.41
- TA418.9.P6 -- .D963 2015eb
Intro -- Title Page -- Copyright Page -- Contents -- Contributors -- Preface -- Introduction: Paul Witherspoon and the Birth of Contemporary Fractured Rock Hydrogeology -- Early Influences -- Underground Gas Storage -- Aquitards -- Geothermal Energy -- Nuclear Waste Isolation -- Fractured Rock Hydrogeology -- Paul Witherspoon's Legacy -- References -- Chapter 1 A Complex Systems Approach to Describing Flow and Transport in Fractured-Porous Media -- 1.1. Introduction -- 1.2. The Field of Complex Systems -- 1.3. Fractured Rock as a Complex System -- 1.4. Models and Approaches: Model Simplifications -- 1.5. Conclusion: Can Complexity Sciences Benefit the Field of Flow and Transport in Fractured-Porous Media? -- Acknowledgment -- References -- PART I Methods of Field Measurements and Experiments -- Chapter 2 Fracture Flow and Underground Research Laboratories for Nuclear Waste Disposal and Physics Experiments -- 2.1. Introduction -- 2.2. Cubic Law for Fracture Flow and Literature on Fractured Rock Mass Characterization -- 2.3. Underground Research Laboratory, Facility, Borehole Studies, and the ISRM Networking Commission -- 2.4. Concluding Remarks -- Acknowledgments -- References -- Chapter 3 Permeability Structure of a Strike-Slip Fault -- 3.1. Introduction -- 3.2. Hydraulic Tests -- 3.3. Drawdown Analysis -- 3.3. Conclusions -- Acknowledgments -- Appendix -- References -- Chapter 4 Feasibility of Long-Term Passive Monitoring of Deep Hydrogeology with Flowing Fluid Electric Conductivity Logging Method -- 4.1. Introduction -- 4.2. Motivation and Problem Definition -- 4.3. Results and Discussion -- 4.4. Concluding Remarks -- Acknowledgments -- References -- PART II Collective Behavior and Emergent Properties of Complex Fractured Rock Systems -- Chapter 5 Particle Swarms in Fractures -- 5.1. Introduction -- 5.2. Experimental Methods.
5.3. Analysis Techniques -- 5.4. Results and Discussion -- 5.5. Conclusions -- Acknowledgments -- References -- Chapter 6 The Effect of Chemical Osmosis on Oil and Gas Production from Fractured Shale Formations -- 6.1. Introduction -- 6.2. Clay as Semipermeable Membrane -- 6.3. Oil Recovery Experiments in Bakken -- 6.4. Mathematical Model -- 6.5. The Effect of Osmosis Pressure on Oil and Gas Production -- 6.6. Conclusions -- Acknowledgments -- Nomenclature (A Dash Denotes No Unit of Measure) -- References -- Chapter 7 An Experimental Investigation of Stress-Dependent Permeability and Permeability Hysteresis Behavior in Rock Fractures -- 7.1. Introduction -- 7.2. Materials and Equipment -- 7.3. Experimental Results -- 7.4. Discussion -- 7.5. Conclusion -- Acknowledgments -- References -- Chapter 8 Permeability of Partially Cemented Fractures -- 8.1. Introduction -- 8.2. Methods -- 8.3. Results -- 8.4. Discussion -- 8.5. Conclusion -- Acknowledgments -- References -- Chapter 9 An Emergent Conductivity Relationship for Water Flow Based on Minimized Energy Dissipation: From Landscapes to Unsaturated Soils -- 9.1. Introduction -- 9.2. Steady-State Optimal Landscape -- 9.3. Unsaturated Flow in Porous Media -- 9.4. Discussion -- 9.5. Concluding Remarks -- Acknowledgments -- References -- Chapter 10 Comparison of Simulated Flow in a Discrete Fracture Laboratory Sample Based on Measured Average and Spatially Varying Hydraulic Conductivity -- 10.1. Introduction -- 10.2. Measured and Simulated Fracture Pore Space Geometry and Computed Fracture Hydraulic Conductivity -- 10.3. Impact of Fracture Permeability Characterization on Computed Flux -- 10.4. Hydraulic Conductivity Scale Effect -- 10.5. Assessing Scaling Relationships Using Pore Space Data: Small-Scale Fracture -- 10.6. Summary -- Appendix -- References.
PART III Connection to the Surrounding Environment -- Chapter 11 Fractures as Advective Conduits at the Earth-Atmosphere Interface -- 11.1. Introduction -- 11.2. Theory -- 11.3. Materials and Methods -- 11.4. Results -- 11.5. Discussion -- 11.6. Conclusions -- Acknowledgments -- References -- Chapter 12 Quantifying Water Flow and Retention in an Unsaturated Fracture-Facial Domain -- 12.1. Introduction -- 12.2. Hydrodynamics of a Fracture-Facial Domain -- 12.3. Application and Results -- 12.4. Discussion -- 12.5. Conclusions -- References -- PART IV Multidisciplinary Research for Different Applications -- Chapter 13 Plutonium Transport in Soil and Plants: An Interdisciplinary Study Motivated by Lysimeter Experiments at the Savannah River Site -- 13.1. Introduction -- 13.2. Lysimeter Experiments at the SRS -- 13.3. Mathematical Model Development and Application -- 13.4. Are Best-Fit Parameter Values Reasonable? -- 13.5. Plutonium Uptake and Transport in Plants -- 13.6. Future Work: A New Field Lysimeter Study -- 13.7. Concluding Observations -- Appendix -- 13A.1. Derivation of the Model for Pu Tranport in Soil and Plants -- 13A.2. The Variably Saturated Flow Model -- 13A.3. The Root Pu Uptake and Transport Model -- Acknowledgment -- References -- Chapter 14 Experimental and Modeling Studies of Episodic Air-Water Two-Phase Flow in Fractures and Fracture Networks -- 14.1. Introduction -- 14.2. Experiments -- 14.3. Modeling -- 14.4. Conclusions and Future Work -- Acknowledgments -- References -- Chapter 15 Simulation of THM Processes in Fractured Reservoirs -- 15.1. Introduction -- 15.2. Geomechanical Equations -- 15.3. Simulator Conservation Equations -- 15.4. Multiporosity Flow Model -- 15.5. Discretization of Conservation Equations -- 15.6. Rock Property Correlations -- 15.7. Example Simulations -- 15.8. Summary and Conclusions -- Acknowledgments.
References -- Index -- EULA.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.