Finite Element Method and Medical Imaging Techniques in Bone Biomechanics.
Material type:
- text
- computer
- online resource
- 9781119681618
- TA347.F5 .K345 2019
Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Introduction -- 1. Main Medical Imaging Techniques -- 1.1. Introduction -- 1.2. X-ray imaging -- 1.2.1. Definition of X-rays -- 1.2.2. X-ray instrumentation and generation -- 1.2.3. Applications of X-ray imaging -- 1.2.4. Advantages and disadvantages of X-ray imaging -- 1.3. Computed tomography -- 1.3.1. Description of the technique -- 1.3.2. Development of computed tomography -- 1.3.3. Instrumentation -- 1.3.4. Applications -- 1.3.5. Advantages and disadvantages of computed tomography -- 1.4. Magnetic resonance imaging -- 1.4.1. Instrumentation -- 1.4.2. Generation of the resonance effect -- 1.4.3. Relaxation and contrast -- 1.4.4. Applications of magnetic resonance imaging -- 1.4.5. Advantages and disadvantages of magnetic resonance imaging -- 1.5. Ultrasound imaging -- 1.5.1. Definition of ultrasound -- 1.5.2. Development of ultrasound imaging -- 1.5.3. Generation of ultrasound -- 1.5.4. Transducers -- 1.5.5. Applications of ultrasound techniques -- 1.5.6. Advantages and disadvantages of ultrasound imaging -- 1.6. Comparison between the different medical imaging techniques -- 1.7. Conclusion -- 2. Medical Image Analysis and Processing -- 2.1. Introduction -- 2.2. Image compression -- 2.3. Image restoration -- 2.4. Image enhancement -- 2.4.1. Window and level -- 2.4.2. Gamma correction -- 2.4.3. Histogram equalization -- 2.4.4. Image subtraction -- 2.4.5. Spatial filtering -- 2.5. Image analysis -- 2.5.1. Texture features -- 2.5.2. Edges and boundaries -- 2.5.3. Shape and structure -- 2.6. Image segmentation -- 2.6.1. Simple methods of image segmentation -- 2.6.2. Active contour segmentation -- 2.6.3. Variational methods -- 2.6.4. Level set methods -- 2.6.5. Active shape and active appearance models -- 2.6.6. Graph cut segmentation -- 2.6.7. Atlas-based segmentation.
2.6.8. Deformable model-based segmentation -- 2.6.9. Energy minimization-based segmentation -- 2.6.10. Learning-based segmentation -- 2.6.11. Other approaches -- 2.7. Image registration -- 2.7.1. Dimensionality -- 2.7.2. Nature of the registration basis -- 2.7.3. Nature of the transformation -- 2.7.4. Transformation domain -- 2.7.5. Interaction -- 2.7.6. Optimization procedure -- 2.7.7. Modalities involved -- 2.7.8. Subject -- 2.7.9. Object -- 2.8. Image fusion -- 2.8.1. Pixel fusion methods -- 2.8.2. Subspace methods -- 2.8.3. Multi-scale methods -- 2.8.4. Ensemble learning techniques -- 2.8.5. Simultaneous truth and performance level estimation -- 2.9. Image understanding -- 2.10. Conclusion -- 3. Recent Methods of Constructing Finite Element Models Based on Medical Images -- 3.1. Introduction -- 3.2. X-ray-based finite element models -- 3.3. CT-based finite element models -- 3.4. MRI-based finite element models -- 3.5. Ultrasound-based finite element models -- 3.6. Conclusion -- 4. Main Bone Sites Modeled Using the Finite Element Method -- 4.1. Introduction -- 4.2. FE modeling of the calcaneus -- 4.3. FE modeling of phalanges -- 4.4. FE modeling of the metatarsal -- 4.5. FE modeling of the tibia -- 4.6. FE modeling of the knee -- 4.7. FE modeling of the femur -- 4.8. FE modeling of the vertebrae -- 4.9. FE modeling of the humerus -- 4.10. FE modeling of the elbow -- 4.11. FE modeling of the ulna -- 4.12. FE modeling of the wrist -- 4.13. Conclusion -- Conclusion -- References -- Index -- Other titles from iSTE in Mechanical Engineering and Solid Mechanics -- EULA.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.