ORPP logo
Image from Google Jackets

On the Steady Motion of a Coupled System Solid-Liquid.

By: Contributor(s): Material type: TextTextSeries: Memoirs of the American Mathematical SocietyPublisher: Providence : American Mathematical Society, 2013Copyright date: ©2013Edition: 1st edDescription: 1 online resource (102 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470410605
Subject(s): Genre/Form: Additional physical formats: Print version:: On the Steady Motion of a Coupled System Solid-LiquidDDC classification:
  • 530.4/17
LOC classification:
  • QD509.S65 -- .B464 2013eb
Online resources:
Contents:
Intro -- Contents -- Chapter 1. Introduction -- Chapter 2. Notation and Preliminaries -- 2.1. Notation -- 2.2. Preliminaries -- Chapter 3. Steady Free Motion: Definition and Formulation of the Problem -- 3.1. Equations of Motion for the Elastic Body -- 3.2. Equations of Motion for the Liquid -- 3.3. Definition of a Steady Free Motion -- 3.4. Non-dimensionlization -- Chapter 4. Main Result -- 4.1. Strategy of Proof -- 4.2. Isolated Orientation -- 4.3. Statement of the Main Theorem -- 4.4. Perturbation Parameter -- 4.5. The Stokes Problem -- 4.6. Perturbing Around an Isolated Orientation -- 4.7. Compatibility Conditions -- Chapter 5. Approximating Problem in Bounded Domains -- 5.1. Fixed-Point Approach -- 5.2. Validity of the Compatibility Conditions -- 5.3. Solvability of the Fluid Equations -- 5.4. Solvability of the Elasticity Equations -- 5.5. Existence in a Bounded Domain -- Chapter 6. Proof of Main Theorem -- Chapter 7. Bodies with Symmetry -- 7.1. Symmetry Function Spaces -- 7.2. Main Theorem for Symmetric Bodies -- 7.3. Stokes Problem for a Symmetric Body -- 7.4. Reformulation of the Equations of Motion -- 7.5. Compatibility Conditions -- 7.6. Approximating Problem in Bounded Domains -- 7.7. Fixed-Point Approach -- 7.8. Validity of the Compatibility Conditions -- 7.9. Solvability of the Fluid Equations -- 7.10. Solvability of the Elasticity Equations -- 7.11. Existence in a Bounded Domain -- 7.12. Proof of Main Theorem for Symmetric Bodies -- 7.13. Examples -- Appendix A. Isolated Orientation -- Bibliography.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Chapter 1. Introduction -- Chapter 2. Notation and Preliminaries -- 2.1. Notation -- 2.2. Preliminaries -- Chapter 3. Steady Free Motion: Definition and Formulation of the Problem -- 3.1. Equations of Motion for the Elastic Body -- 3.2. Equations of Motion for the Liquid -- 3.3. Definition of a Steady Free Motion -- 3.4. Non-dimensionlization -- Chapter 4. Main Result -- 4.1. Strategy of Proof -- 4.2. Isolated Orientation -- 4.3. Statement of the Main Theorem -- 4.4. Perturbation Parameter -- 4.5. The Stokes Problem -- 4.6. Perturbing Around an Isolated Orientation -- 4.7. Compatibility Conditions -- Chapter 5. Approximating Problem in Bounded Domains -- 5.1. Fixed-Point Approach -- 5.2. Validity of the Compatibility Conditions -- 5.3. Solvability of the Fluid Equations -- 5.4. Solvability of the Elasticity Equations -- 5.5. Existence in a Bounded Domain -- Chapter 6. Proof of Main Theorem -- Chapter 7. Bodies with Symmetry -- 7.1. Symmetry Function Spaces -- 7.2. Main Theorem for Symmetric Bodies -- 7.3. Stokes Problem for a Symmetric Body -- 7.4. Reformulation of the Equations of Motion -- 7.5. Compatibility Conditions -- 7.6. Approximating Problem in Bounded Domains -- 7.7. Fixed-Point Approach -- 7.8. Validity of the Compatibility Conditions -- 7.9. Solvability of the Fluid Equations -- 7.10. Solvability of the Elasticity Equations -- 7.11. Existence in a Bounded Domain -- 7.12. Proof of Main Theorem for Symmetric Bodies -- 7.13. Examples -- Appendix A. Isolated Orientation -- Bibliography.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.