ORPP logo
Image from Google Jackets

Technology Innovation in Underground Construction.

By: Material type: TextTextPublisher: Milton : Taylor & Francis Group, 2009Copyright date: ©2010Edition: 1st edDescription: 1 online resource (529 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781482266597
Subject(s): Genre/Form: Additional physical formats: Print version:: Technology Innovation in Underground ConstructionDDC classification:
  • 624.19
LOC classification:
  • TA712 .T38 2010
Online resources:
Contents:
Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Editorials -- Preface -- Chapter 1: Introduction -- 1.1 Motivation -- 1.2 Problems -- 1.3 Vision -- 1.3.1 Design -- 1.3.2 Processes -- 1.3.3 Equipment and materials -- 1.3.4 Maintenance and repair -- 1.4 Contents of the book -- Chapter 2: UCIS - Underground Construction Information System -- 2.1 Introduction -- 2.2 UCIS - Underground Construction Information System -- 2.2.1 Objectives -- 2.2.2 Architecture -- 2.2.3 Design and development -- 2.2.4 Data model -- 2.3 3D ground model -- 2.3.1 Introduction -- 2.3.2 Contribution to the overall project -- 2.3.3 Workflow -- 2.3.4 Geometrical data: Software impleme -- 2.3.5 Geological &amp -- geomechanical attributes: Classification -- 2.3.6 Geological &amp -- geotechnical database -- 2.3.7 Data link geometrical data - geological/geotechnical objects -- 2.3.8 Subsurface models -- 2.4 UCIS-Applications -- 2.4.1 KRONOS - tunnel information system -- 2.4.2 KRONOS-WEB - monitoring data reporting and alarming system -- 2.4.3 Decision support system for cyclic tunnelling -- 2.4.4 Web-based information system on underground construction projects -- 2.4.5 Virtual reality visualisation system -- 2.5 Summary -- Chapter 3: Computer-support for the design of underground structures -- 3.1 Introduction -- 3.2 State-of-the-art in tunnel design -- 3.3 The applied design concept -- 3.3.1 Design method -- 3.3.2 Analysis of the possible degree of automation -- 3.3.3 Automation concept -- 3.4 Rule base for tunnel pre-design -- 3.4.1 Determination of the ground behaviour -- 3.4.2 Determination of suitable excavation methods and support measures -- 3.4.3 General workflow embedded in the rule base -- 3.4.4 Determination of time and costs -- 3.5 Integrated optimization platform for underground construction -- 3.5.1 Realization/implementation.
3.5.2 Background information and software technology -- 3.6 Summary -- Chapter 4: A virtual reality visualisation system for underground construction -- 4.1 Introduction -- 4.1.1 Virtual reality -- 4.1.2 Augmented reality -- 4.1.3 Mixed reality -- 4.1.4 Capacity of today's VR-, AR- and MR-systems -- 4.2 A virtual reality visualisation system for underground construction -- 4.2.1 Objective -- 4.2.2 Input data -- 4.2.3 VR software -- 4.2.4 VR hardware -- 4.2.5 Application example -- 4.3 Summary -- 4.4 Outlook, augmented reality in tunnelling -- Chapter 5: From laboratory, geological and TBM data to input parameters for simulation models -- 5.1 Introduction -- 5.2 A hierarchical, relational and web-driven rock mechanics database -- 5.2.1 Introduction -- 5.2.2 Test data reduction methodology -- 5.2.3 A failure criterion for rocks -- 5.2.4 Example calibration of lab test rock parameters to model parameters of the HMC constitutive model (Level-B of analysis) -- 5.2.5 Structure of the rock mechanics database -- 5.3 Geometrical and geostatistical discretization of geological solids -- 5.3.1 Introduction -- 5.3.2 Solid modeling -- 5.3.3 Geostatistical modeling -- 5.4 A special upscaling theory of rock mass parameters -- 5.4.1 Introduction -- 5.4.2 A special upscaling theory for rock masses -- 5.4.3 Illustrative upscaling example -- 5.5 Back-analysis of TBM logged data -- 5.5.1 Introduction -- 5.5.2 Basic relationships -- 5.5.3 An example of backward analysis -- 5.6 Conclusion -- Chapter 6: Process-oriented numerical simulation of mechanised tunnelling -- 6.1 Introduction -- 6.1.1 Requirements for computational models for mechanised tunnel construction -- 6.1.2 Novel computational framework for process-oriented simulations in mechanised tunnelling as part of an Integrated Decision Support System -- 6.2 Three-phase model for partially saturated soil.
6.2.1 Theory of porous media -- 6.2.2 Governing balance equations -- 6.2.3 Constitutive relations for hydraulic behaviour -- 6.2.4 Stress-strain behaviour of soil skeleton -- 6.3 Finite element formulation of the multiphase model for soft soils -- 6.3.1 Spatial and temporal discretization -- 6.3.2 Object-oriented implementation -- 6.4 Selection of soil models and parameters -- 6.4.1 Saturated soil model -- 6.4.2 Unsaturated soil model -- 6.4.3 Cemented soil model -- 6.4.4 Double hardening soil model -- 6.5 Verification of the three-phase model for soft soils -- 6.5.1 Consolidation test -- 6.5.2 Drying test -- 6.6 Components of the finite element model for mechanised tunnelling -- 6.6.1 Heading face support -- 6.6.2 Frictional contact between TBM and soil -- 6.6.3 Tail void grouting -- 6.6.4 Shield machine, hydraulic jacks, lining and backup trailer -- 6.7 Model generation and simulation procedure -- 6.7.1 Automatic model generation -- 6.7.2 Mesh adaption for TBM advance and steering of shield machine -- 6.7.3 Interface to IOPT -- 6.7.4 Parallelisation concept -- 6.8 Sensitivity analysis and parameter identification -- 6.8.1 Numerical approximation of sensitivity terms -- 6.8.2 Analytical sensitivities derived by the direct differentiation method -- 6.8.3 Adjoint method for deriving analytical sensitivities -- 6.8.4 Implementation of analytical sensitivity methods -- 6.8.5 Optimisation of process parameters -- 6.8.6 Inverse analyses for estimation of unknown parameters -- 6.8.7 Current state and outlook for further developments in sensitivity analyses -- 6.9 Selected applications of the simulation model for mechanised tunnelling -- 6.9.1 Numerical simulation of compressed air support -- 6.9.2 Numerical simulation of changing pressure conditions at the heading face -- 6.9.3 Numerical simulation of the Mas Blau section of L9 of Metro Barcelona.
6.10 Conclusion -- Chapter 7: Computer simulation of conventional construction -- 7.1 Introduction -- 7.2 A new simulation paradigm -- 7.3 Preprocessor -- 7.4 The boundary element method -- 7.4.1 Sequential excavation -- 7.4.2 Non-linear material behavior -- 7.4.3 Heterogeneous ground and ground improvement methods -- 7.4.4 Rock bolts -- 7.4.5 Shotcrete and steel arches -- 7.5 Optimization of code and adaptation to special hardware -- 7.5.1 Computational complexity -- 7.5.2 Iterative solvers -- 7.5.3 Fast methods -- 7.5.4 Modern hardware and parallelization -- 7.6 Practical application -- 7.6.1 The Koralm tunnel -- Chapter 8: Optical fiber sensing cablefor underground settlement monitoring during tunneling -- 8.1 Introduction -- 8.1.1 Tunnel construction with tunnel boring machines -- 8.1.2 Risk associated to tunneling in urban areas -- 8.1.3 State of the art -- 8.1.4 Research frame -- 8.1.5 Settlement to be measured -- 8.1.6 Developed solutions -- 8.2 Sensors based on deformation of optical fibres -- 8.2.1 General princip -- 8.2.2 Brillouin technolog -- 8.2.3 Fiber embedded at the periphery of a cable or a tube -- 8.2.4 Cable environment -- 8.2.5 Development of an industrial process -- 8.3 Sensors based on slope measurement -- 8.4 Sensor validation -- 8.4.1 Geometric validation in open air -- 8.4.2 Geometric validation in buried material - Cairo tests -- 8.5 Conclusion -- Chapter 9:Tunnel seismic exploration and its validation based on data from TBM control and observed geology -- 9.1 Introduction -- 9.2 Seismic exploration during tunneling -- 9.2.1 Challenges -- 9.2.2 Finite-difference simulations of seismic data -- 9.2.3 Short outline of seismic data processing -- 9.3 Use of TBM data and geology for seismic data validation -- 9.4 Conclusion -- Chapter 10: Advances in the steering of tunnel boring machines -- 10.1 Introduction -- 10.1.1 Motivation.
10.1.2 Solution concept -- 10.2 Analysis of relevant steering parameters -- 10.2.1 TBM control and monitoring systems - state of the art -- 10.2.2 Shield drive induced surface deformations and control parameters -- 10.2.3 Expert rules for subsidence control -- 10.3 Steering system -- 10.3.1 Requirements -- 10.3.2 Solution concept and system architecture -- 10.3.3 Fuzzy logic expert system and reasoning -- 10.3.4 Software system developed -- 10.3.5 Verification and validation -- 10.4 Incident management system -- 10.4.1 General -- 10.4.2 Causes for incidents -- 10.4.3 Development of the incident catalogue -- 10.4.4 Description of the incident management system -- 10.4.5 Showcase example in detail -- 10.4.6 Automated detection of incidents -- 10.5 Conclusion -- Chapter 11: Real-time geological mapping of the front face -- 11.1 Introduction -- 11.2 State of the art -- 11.3 Technological solution -- 11.3.1 Objectives -- 11.3.2 Specifications -- 11.3.3 Technological choices -- 11.4 Mobydic monitoring -- 11.5 Applications -- 11.5.1 Lock Ma Chau tunnel -- 11.5.2 A41 -- 11.6 Conclusion -- Chapter 12: Reducing the environmental impact of tunnel boring (OSCAR) -- 12.1 Introduction -- 12.2 State of the art -- 12.2.1 Historical context -- 12.2.2 Tunnel construction with Tunnel Boring Machine -- 12.2.3 Soil conditioning for EPB machine -- 12.3 Research project description -- 12.3.1 Objective -- 12.4 OSCAR reactor -- 12.4.1 OSCAR general view -- 12.4.2 The reactor -- 12.4.3 Screw conveyor -- 12.4.4 Baroïd water loss filter (Garcia, IFP) -- 12.4.5 Direct output -- 12.4.6 Foam production (Fig. 12.11) -- 12.5 Test results -- 12.5.1 Soil -- 12.5.2 Additives -- 12.6 Proposed draft standard -- 12.6.1 Ground sampling -- 12.6.2 Cutter head sealant -- 12.6.3 Soil conditioning test -- 12.7 Conclusion.
Chapter 13: Safety assessment during construction of shotcrete tunnel shells using micromechanical material models.
Summary: This richly-illustrated reference guide presents innovative techniques focused on reducing time, cost and risk in the construction and maintenance of underground facilities. It outlines new design tools for designers, and technological innovations in underground design, construction, and operation, and comprehensively discusses developments in ground improvement, simulation, process integration, safety, monitoring, environmental impact, equipment, boring and cutting, personnel training, materials, robotics and more. Written in an accessible style and with a focus on applied engineering, this book is intended for professionals and advanced students.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Editorials -- Preface -- Chapter 1: Introduction -- 1.1 Motivation -- 1.2 Problems -- 1.3 Vision -- 1.3.1 Design -- 1.3.2 Processes -- 1.3.3 Equipment and materials -- 1.3.4 Maintenance and repair -- 1.4 Contents of the book -- Chapter 2: UCIS - Underground Construction Information System -- 2.1 Introduction -- 2.2 UCIS - Underground Construction Information System -- 2.2.1 Objectives -- 2.2.2 Architecture -- 2.2.3 Design and development -- 2.2.4 Data model -- 2.3 3D ground model -- 2.3.1 Introduction -- 2.3.2 Contribution to the overall project -- 2.3.3 Workflow -- 2.3.4 Geometrical data: Software impleme -- 2.3.5 Geological &amp -- geomechanical attributes: Classification -- 2.3.6 Geological &amp -- geotechnical database -- 2.3.7 Data link geometrical data - geological/geotechnical objects -- 2.3.8 Subsurface models -- 2.4 UCIS-Applications -- 2.4.1 KRONOS - tunnel information system -- 2.4.2 KRONOS-WEB - monitoring data reporting and alarming system -- 2.4.3 Decision support system for cyclic tunnelling -- 2.4.4 Web-based information system on underground construction projects -- 2.4.5 Virtual reality visualisation system -- 2.5 Summary -- Chapter 3: Computer-support for the design of underground structures -- 3.1 Introduction -- 3.2 State-of-the-art in tunnel design -- 3.3 The applied design concept -- 3.3.1 Design method -- 3.3.2 Analysis of the possible degree of automation -- 3.3.3 Automation concept -- 3.4 Rule base for tunnel pre-design -- 3.4.1 Determination of the ground behaviour -- 3.4.2 Determination of suitable excavation methods and support measures -- 3.4.3 General workflow embedded in the rule base -- 3.4.4 Determination of time and costs -- 3.5 Integrated optimization platform for underground construction -- 3.5.1 Realization/implementation.

3.5.2 Background information and software technology -- 3.6 Summary -- Chapter 4: A virtual reality visualisation system for underground construction -- 4.1 Introduction -- 4.1.1 Virtual reality -- 4.1.2 Augmented reality -- 4.1.3 Mixed reality -- 4.1.4 Capacity of today's VR-, AR- and MR-systems -- 4.2 A virtual reality visualisation system for underground construction -- 4.2.1 Objective -- 4.2.2 Input data -- 4.2.3 VR software -- 4.2.4 VR hardware -- 4.2.5 Application example -- 4.3 Summary -- 4.4 Outlook, augmented reality in tunnelling -- Chapter 5: From laboratory, geological and TBM data to input parameters for simulation models -- 5.1 Introduction -- 5.2 A hierarchical, relational and web-driven rock mechanics database -- 5.2.1 Introduction -- 5.2.2 Test data reduction methodology -- 5.2.3 A failure criterion for rocks -- 5.2.4 Example calibration of lab test rock parameters to model parameters of the HMC constitutive model (Level-B of analysis) -- 5.2.5 Structure of the rock mechanics database -- 5.3 Geometrical and geostatistical discretization of geological solids -- 5.3.1 Introduction -- 5.3.2 Solid modeling -- 5.3.3 Geostatistical modeling -- 5.4 A special upscaling theory of rock mass parameters -- 5.4.1 Introduction -- 5.4.2 A special upscaling theory for rock masses -- 5.4.3 Illustrative upscaling example -- 5.5 Back-analysis of TBM logged data -- 5.5.1 Introduction -- 5.5.2 Basic relationships -- 5.5.3 An example of backward analysis -- 5.6 Conclusion -- Chapter 6: Process-oriented numerical simulation of mechanised tunnelling -- 6.1 Introduction -- 6.1.1 Requirements for computational models for mechanised tunnel construction -- 6.1.2 Novel computational framework for process-oriented simulations in mechanised tunnelling as part of an Integrated Decision Support System -- 6.2 Three-phase model for partially saturated soil.

6.2.1 Theory of porous media -- 6.2.2 Governing balance equations -- 6.2.3 Constitutive relations for hydraulic behaviour -- 6.2.4 Stress-strain behaviour of soil skeleton -- 6.3 Finite element formulation of the multiphase model for soft soils -- 6.3.1 Spatial and temporal discretization -- 6.3.2 Object-oriented implementation -- 6.4 Selection of soil models and parameters -- 6.4.1 Saturated soil model -- 6.4.2 Unsaturated soil model -- 6.4.3 Cemented soil model -- 6.4.4 Double hardening soil model -- 6.5 Verification of the three-phase model for soft soils -- 6.5.1 Consolidation test -- 6.5.2 Drying test -- 6.6 Components of the finite element model for mechanised tunnelling -- 6.6.1 Heading face support -- 6.6.2 Frictional contact between TBM and soil -- 6.6.3 Tail void grouting -- 6.6.4 Shield machine, hydraulic jacks, lining and backup trailer -- 6.7 Model generation and simulation procedure -- 6.7.1 Automatic model generation -- 6.7.2 Mesh adaption for TBM advance and steering of shield machine -- 6.7.3 Interface to IOPT -- 6.7.4 Parallelisation concept -- 6.8 Sensitivity analysis and parameter identification -- 6.8.1 Numerical approximation of sensitivity terms -- 6.8.2 Analytical sensitivities derived by the direct differentiation method -- 6.8.3 Adjoint method for deriving analytical sensitivities -- 6.8.4 Implementation of analytical sensitivity methods -- 6.8.5 Optimisation of process parameters -- 6.8.6 Inverse analyses for estimation of unknown parameters -- 6.8.7 Current state and outlook for further developments in sensitivity analyses -- 6.9 Selected applications of the simulation model for mechanised tunnelling -- 6.9.1 Numerical simulation of compressed air support -- 6.9.2 Numerical simulation of changing pressure conditions at the heading face -- 6.9.3 Numerical simulation of the Mas Blau section of L9 of Metro Barcelona.

6.10 Conclusion -- Chapter 7: Computer simulation of conventional construction -- 7.1 Introduction -- 7.2 A new simulation paradigm -- 7.3 Preprocessor -- 7.4 The boundary element method -- 7.4.1 Sequential excavation -- 7.4.2 Non-linear material behavior -- 7.4.3 Heterogeneous ground and ground improvement methods -- 7.4.4 Rock bolts -- 7.4.5 Shotcrete and steel arches -- 7.5 Optimization of code and adaptation to special hardware -- 7.5.1 Computational complexity -- 7.5.2 Iterative solvers -- 7.5.3 Fast methods -- 7.5.4 Modern hardware and parallelization -- 7.6 Practical application -- 7.6.1 The Koralm tunnel -- Chapter 8: Optical fiber sensing cablefor underground settlement monitoring during tunneling -- 8.1 Introduction -- 8.1.1 Tunnel construction with tunnel boring machines -- 8.1.2 Risk associated to tunneling in urban areas -- 8.1.3 State of the art -- 8.1.4 Research frame -- 8.1.5 Settlement to be measured -- 8.1.6 Developed solutions -- 8.2 Sensors based on deformation of optical fibres -- 8.2.1 General princip -- 8.2.2 Brillouin technolog -- 8.2.3 Fiber embedded at the periphery of a cable or a tube -- 8.2.4 Cable environment -- 8.2.5 Development of an industrial process -- 8.3 Sensors based on slope measurement -- 8.4 Sensor validation -- 8.4.1 Geometric validation in open air -- 8.4.2 Geometric validation in buried material - Cairo tests -- 8.5 Conclusion -- Chapter 9:Tunnel seismic exploration and its validation based on data from TBM control and observed geology -- 9.1 Introduction -- 9.2 Seismic exploration during tunneling -- 9.2.1 Challenges -- 9.2.2 Finite-difference simulations of seismic data -- 9.2.3 Short outline of seismic data processing -- 9.3 Use of TBM data and geology for seismic data validation -- 9.4 Conclusion -- Chapter 10: Advances in the steering of tunnel boring machines -- 10.1 Introduction -- 10.1.1 Motivation.

10.1.2 Solution concept -- 10.2 Analysis of relevant steering parameters -- 10.2.1 TBM control and monitoring systems - state of the art -- 10.2.2 Shield drive induced surface deformations and control parameters -- 10.2.3 Expert rules for subsidence control -- 10.3 Steering system -- 10.3.1 Requirements -- 10.3.2 Solution concept and system architecture -- 10.3.3 Fuzzy logic expert system and reasoning -- 10.3.4 Software system developed -- 10.3.5 Verification and validation -- 10.4 Incident management system -- 10.4.1 General -- 10.4.2 Causes for incidents -- 10.4.3 Development of the incident catalogue -- 10.4.4 Description of the incident management system -- 10.4.5 Showcase example in detail -- 10.4.6 Automated detection of incidents -- 10.5 Conclusion -- Chapter 11: Real-time geological mapping of the front face -- 11.1 Introduction -- 11.2 State of the art -- 11.3 Technological solution -- 11.3.1 Objectives -- 11.3.2 Specifications -- 11.3.3 Technological choices -- 11.4 Mobydic monitoring -- 11.5 Applications -- 11.5.1 Lock Ma Chau tunnel -- 11.5.2 A41 -- 11.6 Conclusion -- Chapter 12: Reducing the environmental impact of tunnel boring (OSCAR) -- 12.1 Introduction -- 12.2 State of the art -- 12.2.1 Historical context -- 12.2.2 Tunnel construction with Tunnel Boring Machine -- 12.2.3 Soil conditioning for EPB machine -- 12.3 Research project description -- 12.3.1 Objective -- 12.4 OSCAR reactor -- 12.4.1 OSCAR general view -- 12.4.2 The reactor -- 12.4.3 Screw conveyor -- 12.4.4 Baroïd water loss filter (Garcia, IFP) -- 12.4.5 Direct output -- 12.4.6 Foam production (Fig. 12.11) -- 12.5 Test results -- 12.5.1 Soil -- 12.5.2 Additives -- 12.6 Proposed draft standard -- 12.6.1 Ground sampling -- 12.6.2 Cutter head sealant -- 12.6.3 Soil conditioning test -- 12.7 Conclusion.

Chapter 13: Safety assessment during construction of shotcrete tunnel shells using micromechanical material models.

This richly-illustrated reference guide presents innovative techniques focused on reducing time, cost and risk in the construction and maintenance of underground facilities. It outlines new design tools for designers, and technological innovations in underground design, construction, and operation, and comprehensively discusses developments in ground improvement, simulation, process integration, safety, monitoring, environmental impact, equipment, boring and cutting, personnel training, materials, robotics and more. Written in an accessible style and with a focus on applied engineering, this book is intended for professionals and advanced students.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.