Recent Developments in Forward Osmosis Processes.
Material type:
- text
- computer
- online resource
- 9781780408125
- 628.164
- TD442.5.R434 2017
Cover -- Copyright -- Contents -- Additional Image credits -- List of Contributors -- Preface -- Summary -- Part 1: Introduction -- Chapter 1.1: Population distribution and water scarcity -- 1.1.1 Osmotic Membrane Processes -- 1.1.2 Forward Osmosis (FO) -- 1.1.3 FO System for Wastewater Recovery and Seawater Desalination -- 1.1.4 Concentration Polarization in FO Membranes -- 1.1.5 FO Membrane Fouling -- 1.1.6 Energy Demand in Desalination and Water Treatment Processes -- 1.1.7 Scope and Outline -- 1.1.8 References -- Part 2: Water Recovery -- Chapter 2.1: The management of urban runoff in coastal regions -- 2.1.1 Introduction -- 2.1.2 Materials and Methods -- 2.1.2.1 Synthetic urban runoff and seawater -- 2.1.2.2 FO membrane and simulated osmotic detention pond -- 2.1.2.3 Analytical methods -- 2.1.3 Results and Discussion -- 2.1.3.1 Effects of feed water condition on flux patterns -- 2.1.3.2 Salt leakage and NOM fouling -- 2.1.3.3 Rejection of trace metals and nutrients -- 2.1.3.4 Environmental and economic implications -- 2.1.4 Summary -- 2.1.5 References -- Chapter 2.2: Water harvesting from municipal wastewater -- 2.2.1 Introduction -- 2.2.2 Experimental -- 2.2.2.1 Feed water and draw solution -- 2.2.2.2 FO membrane and experimental set-up -- 2.2.2.3 Analytical methods -- 2.2.3 Results and Discussion -- 2.2.3.1 Flux patterns -- 2.2.3.2 Salt leakage and retention of nutrients and trace metals -- 2.2.3.3 Fouling characterization and osmotic backwash -- 2.2.4 Summary -- 2.2.5 References -- Chapter 2.3: Indirect desalination of seawater -- 2.3.1 Introduction -- 2.3.2 Materials, Methods and Experimental -- 2.3.2.1 Membranes and equipment -- 2.3.2.2 Draw solution and feed water -- 2.3.2.3 Experimental protocol -- 2.3.3 Theoretical Background -- 2.3.4 Results and Discussion -- 2.3.4.1 Feed water and draw solution characterization.
2.3.4.2 Long-term forward osmosis experiments -- 2.3.5 Energy, Cost and Water Reuse Considerations -- 2.3.5.1 Comparison of energy use -- 2.3.5.2 Cost analysis -- 2.3.5.3 Alternative water reuse of diluted draw solutions -- 2.3.6 Summary -- 2.3.7 References -- Part 3: Fouling -- Chapter 3.1: Fouling propensity during desalination of seawater -- 3.1.1 Introduction -- 3.1.2 Materials and Methods -- 3.1.2.1 Feed and draw solution -- 3.1.2.2 Forward osmosis set-up and fouling tests -- 3.1.2.3 Analytical methods -- 3.1.3 Results and Discussion -- 3.1.3.1 Flux patterns during FO -- 3.1.3.2 Identification of major foulants -- 3.1.3.3 Salt and foulant rejection -- 3.1.4 Summary -- 3.1.5 References -- Chapter 3.2: NOM and TEP fouling -- 3.2.1 Introduction -- 3.2.2 Experimental -- 3.2.2.1 FO membranes and cell configuration -- 3.2.2.2 Water samples -- 3.2.2.3 FO membrane fouling procedure -- 3.2.2.4 NOM characterization -- 3.2.2.5 FO membrane cleaning -- 3.2.3 Results and Discussion -- 3.2.3.1 FO membrane process -- 3.2.3.2 Fouling of the active layer of FO membrane -- 3.2.3.3 Fouling of the support layer of FO membrane -- 3.2.3.4 Cleaning of the FO membrane - active layer -- 3.2.3.5 Cleaning of the FO membrane - support layer -- 3.2.4 Summary -- 3.2.5 References -- Chapter 3.3: Draw solute induced calcium carbonate scaling -- 3.3.1 Introduction -- 3.3.2 Materials and Methods -- 3.3.2.1 FS, DS and FO set-up -- 3.3.2.2 FO membrane, and the measurement of intrinsic permeability and separation properties -- 3.3.2.3 Experimental protocol for FO testing -- 3.3.2.4 Analytical methods -- 3.3.3 Results and Discussion -- 3.3.3.1 Characterization of FO membrane -- 3.3.3.2 Water and reverse solute flux -- 3.3.3.3 Characterization of scaling in seawater desalination using NH3/CO2 FO process.
3.3.3.4 Reversibility of scaling and recovery of permeate water flux by hydraulic flushing -- 3.3.3.5 Mechanism of scaling formation in seawater desalination using NH3/CO2 FO process -- 3.3.4 Summary -- 3.3.5 References -- Chapter 3.4: Impact of spacer thickness on biofouling in forward osmosis -- 3.4.1 Introduction -- 3.4.2 Materials and Methods -- 3.4.2.1 Membrane, spacers and cell configuration -- 3.4.2.2 Water sources -- 3.4.2.3 Biofilm formation -- 3.4.2.4 Analytical methods -- 3.4.3 Results -- 3.4.3.1 Effect of spacer thickness on performance -- 3.4.3.2 Effect of spacer thickness on biomass accumulation -- 3.4.3.3 Effect of spacer thickness on fouling localization -- 3.4.3.4 Effect of spacer thickness on fouling composition -- 3.4.4 Discussion -- 3.4.4.1 Thickest spacer provides the best performance -- 3.4.4.2 FO and RO show similar biofouling patterns -- 3.4.4.3 Future studies -- 3.4.5 Summary -- 3.4.6 References -- Chapter 3.5: Effect of cleaning methods to remove organic fouling -- 3.5.1 Introduction -- 3.5.2 Materials and Methods -- 3.5.3 Results -- 3.5.4 Summary -- 3.5.5 References -- Part 4: Rejection of Pollutants -- Chapter 4.1: Rejection of micropollutants by FO membranes -- 4.1.1 Introduction -- 4.1.2 Materials and Methods -- 4.1.2.1 FO membrane -- 4.1.2.2 RO membrane -- 4.1.2.3 Source waters -- 4.1.2.4 Experimental setup and procedure -- 4.1.2.5 Micropollutants stock preparation and analyses -- 4.1.2.6 FO membrane characterization -- 4.1.3 Results and Discussion -- 4.1.3.1 Zeta potential and contact angle -- 4.1.3.2 Rejection of micropollutants by FO -- 4.1.4 Summary -- 4.1.5 References -- Chapter 4.2: Rejection of boron -- 4.2.1 Introduction -- 4.2.2 Materials and Methods -- 4.2.2.1 FO Membranes -- 4.2.2.2 Experimental setup and procedure -- 4.2.3 Results and Discussion -- 4.2.3.1 Membrane characterization.
4.2.3.2 Membrane performance -- 4.2.3.3 Boron flux -- 4.2.4 Summary -- 4.2.5 References -- Part 5: Draw Solution and Membranes -- Chapter 5.1: Draw solution -- 5.1.1 Introduction -- 5.1.2 Fundamentals of FO Processes -- 5.1.3 Ideal Draw Solution for the FO Process -- 5.1.4 Literature Review About Draw Solutions -- 5.1.4.1 Commercially available compounds as draw solutes -- 5.1.4.2 Synthetic materials as draw solutes -- 5.1.5 Applications of Typical Draw Solutions in Integrated FO Processes -- 5.1.5.1 Seawater desalination -- 5.1.5.2 Wastewater reclamation -- 5.1.5.3 Protein enrichment -- 5.1.5.4 Power regeneration -- 5.1.6 Challenges and Prospects for the Future -- 5.1.7 Summary -- 5.1.8 Nomenclature -- 5.1.8.1 Greek symbols -- 5.1.9 References -- Chapter 5.2: Cellulose acetate membrane: minimized internal concentration polarization -- 5.2.1 Introduction -- 5.2.2 Experimental -- 5.2.2.1 Materials -- 5.2.2.2 Membrane preparation -- 5.2.2.3 Forward osmosis and fouling tests -- 5.2.2.4 Pure water permeability, salt rejection and salt permeability tests -- 5.2.2.5 Pore size and pore size distribution -- 5.2.2.6 Water contact angle -- 5.2.2.7 Porosity P -- 5.2.2.8 Field emission scanning electronic microscopy (FESEM) -- 5.2.2.9 Atomic force microscope (AFM) -- 5.2.2.10 Positron annihilation spectroscopy (PAS) -- 5.2.3 Results and Discussion -- 5.2.3.1 Morphology influenced by different substrates and phase inversion conditions -- 5.2.3.2 Morphology characterized by PALS -- 5.2.3.3 Pore size and pore size distribution -- 5.2.3.4 PWP, NaCl rejection and FO performance of different membranes -- 5.2.3.5 Modeling of FO performance and structural parameter St -- 5.2.3.6 Single vs. double dense-layer structure in the FO-MBR integrated system -- 5.2.4 Summary -- 5.2.5 References -- Part 6: Modeling -- Chapter 6.1: Modeling water flux -- 6.1.1 Introduction.
6.1.2 Governing Equations for Permeate Flux -- 6.1.2.1 External concentration polarization -- 6.1.2.2 Internal concentration polarization -- 6.1.2.3 Model parameters -- 6.1.3 Results and Discussion -- 6.1.3.1 Dense symmetric membrane -- 6.1.3.2 Asymmetric membrane in PRO mode -- 6.1.3.3 Asymmetric membrane in FO mode -- 6.1.3.4 Implications for improved membrane design -- 6.1.4 Summary -- 6.1.5 References -- Chapter 6.2: Biofouling in FO systems: an experimental and numerical study -- 6.2.1 Introduction -- 6.2.2 Experimental -- 6.2.2.1 Experimental setup -- 6.2.2.2 Model description -- 6.2.3 Results and Discussion -- 6.2.3.1 Evaluation of the forward osmosis model -- 6.2.3.2 Biofilm effect on FO performance -- 6.2.4 Summary -- 6.2.5 References -- Part 7: Outlook -- Chapter 7.1: Emerging applications for greater sustainability -- 7.1.1 Introduction -- 7.1.2 Osmotic Dilution for Energy Conservation -- 7.1.3 Osmosis Engineered for Protection of the Environment -- 7.1.4 Membranes at Sea: Fuel from Waste -- 7.1.5 Osmotic Augmentation of Water Resources for Agriculture -- 7.1.6 Outlook -- 7.1.7 Summary -- 7.1.8 References -- Chapter 7.2: Life cycle cost assessment -- 7.2.1 Introduction -- 7.2.2 Methodology -- 7.2.2.1 Life cycle cost methodology -- 7.2.2.2 Technologies analyzed -- 7.2.2.3 OPEX and CAPEX calculations -- 7.2.3 Results and Discussion -- 7.2.3.1 Life cycle cost analysis and sensitivity evaluation -- 7.2.3.2 Biogas production -- 7.2.3.3 Water quality versus public perception -- 7.2.3.4 Wastewater recovery and reuse: successful projects -- 7.2.3.5 Co-location -- 7.2.4 Summary -- 7.2.5 References -- Chapter 7.3: Niches in seawater desalination and wastewater reuse -- 7.3.1 Introduction -- 7.3.1.1 Increasing need for fresh water along coasts -- 7.3.1.2 Current membrane systems in the water industry: reverse osmosis.
7.3.1.3 Forward osmosis hybrid systems: an opportunity.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.