Finite-Time Stability : an Input-Output Approach.
Material type:
- text
- computer
- online resource
- 9781119140566
- QA871 .A438 2018
Cover -- Title Page -- Copyright -- Contents -- Preface -- List of Acronyms -- Chapter 1 Introduction -- 1.1 Finite‐Time Stability (FTS) -- 1.2 Input‐Output Finite‐Time Stability -- 1.3 FTS and Finite‐Time Convergence -- 1.4 Background -- 1.4.1 Vectors and signals -- 1.4.2 Impulsive dynamical linear systems -- 1.5 Book Organization -- Chapter 2 Linear Time‐Varying Systems: IO‐FTS Analysis -- 2.1 Problem Statement -- 2.2 IO‐FTS for W2 Exogenous Inputs -- 2.2.1 Preliminaries -- 2.2.2 Necessary and sufficient conditions for IO‐FTS for W2 exogenous inputs -- 2.2.3 Computational issues -- 2.3 A Sufficient Condition for IO‐FTS for W∞ Exogenous Inputs -- 2.4 Summary -- Chapter 3 Linear Time‐Varying Systems: Design of IO Finite‐Time Stabilizing Controllers -- 3.1 IO Finite‐Time Stabilization via State Feedback -- 3.2 IO‐Finite‐Time Stabilization via Output Feedback -- 3.3 Summary -- Chapter 4 IO‐FTS with Nonzero Initial Conditions -- 4.1 Preliminaries -- 4.2 Interpretation of the Norm of the Operator LSNZ -- 4.3 Sufficient Conditions for IO‐FTS‐NZIC -- 4.4 Design of IO Finite‐Time Stabilizing Controllers NZIC -- 4.4.1 State feedback -- 4.4.2 Output feedback -- 4.5 Summary -- Chapter 5 IO‐FTS with Constrained Control Inputs -- 5.1 Structured IO‐FTS and Problem Statement -- 5.2 Structured IO‐FTS Analysis -- 5.3 State Feedback Design -- 5.4 Design of an Active Suspension Control System Using Structured IO‐FTS -- 5.5 Summary -- Chapter 6 Robustness Issues and the Mixed H∞/FTS Control Problem -- 6.1 Preliminaries -- 6.1.1 System setting -- 6.1.2 IO‐FTS with an H∞ bound -- 6.2 Robust and Quadratic IO‐FTS with an H∞ Bound -- 6.2.1 Main result -- 6.2.2 A numerical example -- 6.3 State Feedback Design -- 6.3.1 Numerical example: Cont'd -- 6.4 Case study: Quadratic IO‐FTS with an H∞ Bound of the Inverted Pendulum -- 6.5 Summary.
Chapter 7 Impulsive Dynamical Linear Systems: IO‐FTS Analysis -- 7.1 Background -- 7.1.1 Preliminary results for the W2 case -- 7.2 Main Results: Necessary and Sufficient Conditions for IO‐FTS in Presence of W2 Signals -- 7.3 Example and Computational Issues -- 7.4 Main Result: A Sufficient Condition for IO‐FTS in Presence of W∞ Signals -- 7.4.1 An illustrative example -- 7.5 Summary -- Chapter 8 Impulsive Dynamical Linear Systems: IO Finite‐Time Stabilization via Dynamical Controllers -- 8.1 Problem Statement -- 8.2 IO Finite‐Time Stabilization of IDLSs: W2 Signals -- 8.2.1 A numerical example -- 8.3 IO Finite‐Time Stabilization of IDLSs: W∞ Signals -- 8.3.1 Illustrative example: Cont'd -- 8.4 Summary -- Chapter 9 Impulsive Dynamical Linear Systems with Uncertain Resetting Times -- 9.1 Arbitrary Switching -- 9.2 Uncertain Switching -- 9.3 Numerical Example -- 9.3.1 Known resetting times -- 9.3.2 Arbitrary switching -- 9.3.3 Uncertain switching -- 9.4 Summary -- Chapter 10 Hybrid Architecture for Deployment of Finite‐Time Control Systems -- 10.1 Controller Architecture -- 10.2 Examples -- 10.2.1 Hybrid active suspension control -- 10.2.2 Lateral collision avoidance system -- 10.3 Summary -- Appendix A Fundamentals on Linear Time‐Varying Systems -- A.1 Existence and Uniqueness -- A.2 The State Transition Matrix -- A.3 Lyapunov Stability of Linear Time‐Varying Systems -- A.4 Input to State and Input to Output Response -- Appendix B Schur Complements -- Appendix C Computation of Feasible Solutions to Optimizations Problems Involving DLMIs -- C.1 Numerical Solution to a Feasibility Problem Constrained by a DLMI Coupled with LMIs -- C.2 Numerical Solution to a Feasibility Problem Constrained by a D/DLMI Coupled with LMIs -- Appendix D Solving Optimization Problems Involving DLMIs using MATLAB®.
D.1 MATLAB® Script for the Solution of the Optimization Problem with DLMI/LMI Constraints Presented in Example 2.2 -- D.2 MATLAB® Script for the Solution of the D/DLMI/LMI Feasibility Problem Presented in Section 8.3.1 -- Appendix E Examples of Applications of IO‐FTS Control Design to Real‐World Systems -- E.1 Building Subject to Earthquakes -- E.2 Quarter Car Suspension Model -- E.3 Inverted Pendulum -- E.4 Yaw and Lateral Motions of a Two‐Wheel Vehicle -- References -- Index -- EULA.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.