Basin Analysis : Principles and Application to Petroleum Play Assessment.
Material type:
- text
- computer
- online resource
- 9781118450444
- 552/.5
- QE571 .A45 2013
Cover -- Title page -- Copyright page -- Contents -- Companion website details -- Preface to the third edition -- PART 1: The foundations of sedimentary basins -- CHAPTER ONE: Basins in their geodynamic environment -- Summary -- 1.1 Introduction and rationale -- 1.2 Compositional zonation of the Earth -- 1.2.1 Oceanic crust -- 1.2.2 Continental crust -- 1.2.3 Mantle -- 1.3 Rheological zonation of the Earth -- 1.3.1 Lithosphere -- 1.3.2 Sub-lithospheric mantle -- 1.4 Geodynamic background -- 1.4.1 Plate tectonics, seismicity and deformation -- 1.4.2 The geoid -- 1.4.3 Topography and isostasy -- 1.4.4 Heat flow -- 1.4.5 Cycles of plate reorganisation -- 1.5 Classification schemes of sedimentary basins -- 1.5.1 Basin-forming mechanisms -- CHAPTER TWO: The physical state of the lithosphere -- Summary -- 2.1 Stress and strain -- 2.1.1 Stresses in the lithosphere -- 2.1.2 Strain in the lithosphere -- 2.1.3 Linear elasticity -- 2.1.4 Flexure in two dimensions -- 2.1.5 Flexural isostasy -- 2.1.6 Effects of temperature and pressure on rock density -- 2.2 Heat flow -- 2.2.1 Fundamentals -- 2.2.2 The geotherm -- 2.2.3 Radiogenic heat production -- 2.2.4 Effect of erosion and sediment blanketing on the geotherm -- 2.2.5 Transient effects of erosion and deposition on the continental geotherm -- 2.2.6 Effect of variable thermal conductivity -- 2.2.7 Time-dependent heat conduction: the case of cooling oceanic lithosphere -- 2.2.8 Convection, the adiabat and mantle viscosity -- 2.3 Rock rheology and lithospheric strength profiles -- 2.3.1 Fundamentals on constitutive laws -- 2.3.2 Rheology of the mantle -- 2.3.3 Rheology of the continental crust -- 2.3.4 Strength profiles of the lithosphere -- PART 2: The mechanics of sedimentary basin formation -- CHAPTER THREE: Basins due to lithospheric stretching -- Summary -- 3.1 Introduction.
3.1.1 Basins of the rift-drift suite -- 3.1.2 Models of continental extension -- 3.2 Geological and geophysical observations in regions of continental extension -- 3.2.1 Cratonic basins -- 3.2.2 Rifts -- 3.2.3 Failed rifts -- 3.2.4 Continental rim basins -- 3.2.5 Proto-oceanic troughs -- 3.2.6 Passive continental margins -- 3.3 Uniform stretching of the continental lithosphere -- 3.3.1 The 'reference' uniform stretching model -- 3.3.2 Uniform stretching at passive continental margins -- 3.4 Modifications to the uniform stretching model -- 3.4.1 Protracted periods of rifting -- 3.4.2 Non-uniform (depth-dependent) stretching -- 3.4.3 Pure versus simple shear -- 3.4.4 Elevated asthenospheric temperatures -- 3.4.5 Magmatic activity -- 3.4.6 Induced mantle convection -- 3.4.7 Radiogenic heat production -- 3.4.8 Flexural compensation -- 3.4.9 The depth of necking -- 3.4.10 Phase changes -- 3.5 A dynamical approach to lithospheric extension -- 3.5.1 Generalities -- 3.5.2 Forces on the continental lithosphere -- 3.5.3 Rheology of the continental lithosphere -- 3.5.4 Numerical and analogue experiments on strain rate during continental extension -- 3.6 Estimation of the stretch factor and strain rate history -- 3.6.1 Estimation of the stretch factor from thermal subsidence history -- 3.6.2 Estimation of the stretch factor from crustal thickness changes -- 3.6.3 Estimation of the stretch factor from forward tectonostratigraphic modelling -- 3.6.4 Inversion of strain rate history from subsidence data -- 3.6.5 Multiple phases of rifting -- CHAPTER FOUR: Basins due to flexure -- Summary -- 4.1 Basic observations in regions of lithospheric flexure -- 4.1.1 Ice cap growth and melting -- 4.1.2 Oceanic seamount chains -- 4.1.3 Flexure beneath sediment loads -- 4.1.4 Ocean trenches -- 4.1.5 Mountain ranges, fold-thrust belts and foreland basins.
4.2 Flexure of the lithosphere: geometry of the deflection -- 4.2.1 Deflection of a continuous plate under a point load (2D) or line load (3D) -- 4.2.2 Deflection of a broken plate under a line load -- 4.2.3 Deflection of a continuous plate under a distributed load -- 4.2.4 Bending stresses -- 4.3 Flexural rigidity of oceanic and continental lithosphere -- 4.3.1 Controls on the flexural rigidity of oceanic lithosphere -- 4.3.2 Flexure of the continental lithosphere -- 4.4 Lithospheric buckling and in-plane stress -- 4.4.1 Theory: linear elasticity -- 4.4.2 Lithospheric buckling in nature and in numerical experiments -- 4.4.3 Origin of intraplate stresses -- 4.5 Orogenic wedges -- 4.5.1 Introduction to basins at convergent boundaries -- 4.5.2 The velocity field at sites of plate convergence -- 4.5.3 Critical taper theory -- 4.5.4 Double vergence -- 4.5.5 Analogue models -- 4.5.6 Numerical approaches to orogenic wedge development -- 4.5.7 Low Péclet number intracontinental orogens -- 4.5.8 Horizontal in-plane forces during convergent orogenesis -- 4.6 Foreland basin systems -- 4.6.1 Introduction -- 4.6.2 Depositional zones -- 4.6.3 Diffusive models of mountain belt erosion and basin deposition -- 4.6.4 Coupled tectonic-erosion dynamical models of orogenic wedges -- 4.6.5 Modelling aspects of foreland basin stratigraphy -- CHAPTER FIVE: Effects of mantle dynamics -- Summary -- 5.1 Fundamentals and observations -- 5.1.1 Introduction: mantle dynamics and plate tectonics -- 5.1.2 Buoyancy and scaling relationships: introductory theory -- 5.1.3 Flow patterns in the mantle -- 5.1.4 Seismic tomography -- 5.1.5 Plate mode versus plume mode -- 5.1.6 The geoid -- 5.2 Surface topography and bathymetry produced by mantle flow -- 5.2.1 Introduction: dynamic topography and buoyancy -- 5.2.2 Dynamic topography associated with subducting slabs.
5.2.3 Dynamic topography associated with supercontinental assembly and dispersal -- 5.2.4 Dynamic topography associated with small-scale convection -- 5.2.5 Pulsing plumes -- 5.2.6 Hotspots, coldspots and wetspots -- 5.3 Mantle dynamics and magmatic activity -- 5.3.1 Melt generation during continental extension -- 5.3.2 Large igneous provinces -- 5.3.3 The northern North Atlantic and the Iceland plume -- 5.3.4 The Afar region, Ethiopia -- 5.4 Mantle dynamics and basin development -- 5.4.1 Topography, denudation and river drainage -- 5.4.2 Cratonic basins -- 5.4.3 The history of sea-level change and the flooding of continental interiors -- CHAPTER SIX: Basins associated with strike-slip deformation -- 6.1 Overview -- 6.1.1 Geological, geomorphological and geophysical observations -- 6.1.2 Diversity of basins in strike-slip zones -- 6.2 The structural pattern of strike-slip fault systems -- 6.2.1 Structural features of the principal displacement zone (PDZ) -- 6.2.2 Role of oversteps -- 6.3 Basins in strike-slip zones -- 6.3.1 Geometric properties of pull-apart basins -- 6.3.2 Kinematic models for pull-apart basins -- 6.3.3 Continuum development from a releasing bend: evolutionary sequence of a pull-apart basin -- 6.3.4 Strike-slip deformation and pull-apart basins in obliquely convergent orogens -- 6.4 Modelling of pull-apart basins -- 6.4.1 Numerical models -- 6.4.2 Sandbox experiments: pure strike-slip versus transtension -- 6.4.3 Application of model of uniform extension to pull-apart basins -- 6.4.4 Pull-apart basin formation and thin-skinned tectonics: the Vienna Basin -- 6.5 Characteristic depositional systems -- PART 3: The sedimentary basin-fill -- CHAPTER SEVEN: The sediment routing system -- Summary -- 7.1 The sediment routing system in basin analysis -- 7.2 The erosional engine -- 7.2.1 Weathering and the regolith.
7.2.2 Terrestrial sediment and solute yields -- 7.2.3 BQART equations -- 7.2.4 Chemical weathering and global biogeochemical cycles -- 7.3 Measurements of erosion rates -- 7.3.1 Rock uplift, exhumation and surface uplift -- 7.3.2 Point-wise erosion rates from thermochronometers -- 7.3.3 Catchment-scale erosion rates from cosmogenic radionuclides -- 7.3.4 Catchment erosion rates using low-temperature thermochronometers -- 7.3.5 Erosion rates at different temporal and spatial scales -- 7.4 Channel-hillslope processes -- 7.4.1 Modelling hillslopes -- 7.4.2 Bedrock river incision -- 7.5 Long-range sediment transport and deposition -- 7.5.1 Principles of long-range sediment transport -- 7.5.2 Sediment transport in marine segments of the sediment routing system -- 7.5.3 Depositional sinks: sediment storage -- 7.5.4 Downstream fining -- 7.6 Joined-up thinking: teleconnections in source-to-sink systems -- 7.6.1 Provenance and tracers -- detrital thermochronology -- 7.6.2 Mapping of the sediment routing system fairway -- 7.6.3 Landscape evolution models and response times -- 7.6.4 Interaction of axial and longitudinal drainage -- CHAPTER EIGHT: Basin stratigraphy -- Summary -- 8.1 A primer on process stratigraphy -- 8.1.1 Introduction -- 8.1.2 Accommodation, sediment supply and sea level -- 8.1.3 Simple 1D forward models from first principles -- 8.2 Stratigraphic cycles: definition and recognition -- 8.2.1 The hierarchy from beds to megasequences -- 8.2.2 Forcing mechanisms -- 8.2.3 Unforced cyclicity -- 8.3 Dynamical approaches to stratigraphy -- 8.3.1 Carbonate stratigraphy -- 8.3.2 Siliciclastic stratigraphy -- 8.3.3 Shelf-edge and shoreline trajectories -- clinoform progradation -- 8.4 Landscapes into rock -- 8.4.1 Stratigraphic completeness -- 8.4.2 Gating models -- 8.4.3 Hierarchies and upscaling -- 8.4.4 Magnitude-frequency relationships.
CHAPTER NINE: Subsidence history.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.