ORPP logo
Image from Google Jackets

Stem Cells - from Drug to Drug Discovery.

By: Contributor(s): Material type: TextTextPublisher: Berlin/Boston : Walter de Gruyter GmbH, 2017Copyright date: ©2017Edition: 1st edDescription: 1 online resource (232 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783110493764
Subject(s): Genre/Form: Additional physical formats: Print version:: Stem Cells - from Drug to Drug DiscoveryLOC classification:
  • QH588.S83.S746 2017
Online resources:
Contents:
Intro -- Contents -- Preface -- Contributing authors -- List of abbreviations -- 1. Human pluripotent stem-cell-derived vascular cells: in vitro model for angiogenesis and drug discovery -- 1.1 Introduction -- 1.2 Formation of blood vessels -- 1.3 Current models to assess angiogenesis -- 1.3.1 In vitro assays -- 1.3.2 In vivo models of angiogenesis -- 1.4 Promise of stem-cell-based angiogenesis models -- 1.5 Differentiation of human PSCs into vascular lineages -- 1.5.1 Embryoid body-mediated differentiation -- 1.5.2 Co-culture mediated differentiation -- 1.5.3 Directed vascular differentiation with specific factors and matrix components -- 1.6 Building blood vessels in vitro - PSC models of angiogenesis -- 1.6.1 2D co-culture angiogenesis assay -- 1.6.2 Embryoid body-based 3D angiogenesis models -- 1.6.3 3D vascular spheroidal co-culture model -- 1.6.4 In vitro 3D vascularized tissue equivalent (vascular organoids) model -- 1.7 Conclusions and future outlook -- 1.8 References -- 2. Role of small molecules in the cardiac differentiation of mesenchymal stem cells -- 2.1 Introduction -- 2.2 Epigenetic modifiers and cardiomyogenic differentiation of MSCs -- 2.2.1 5-azacytidine -- 2.2.2 Zebularine -- 2.2.3 RG108 -- 2.3 Cardioprotective compounds -- 2.3.1 Statins -- 2.3.2 Resveratrol -- 2.3.3 Trimetazidine -- 2.3.4 Pioglitazone -- 2.4 Fatty acids and ipids -- 2.4.1 Phorbol myristate acetate -- 2.4.2 Sphingosine-1-phosphate -- 2.5 Acids -- 2.5.1 Salvianolic acid B -- 2.5.2 Retinoic acid -- 2.6 Peptides and peptide hormones -- 2.6.1 Triiodo-L-thyronine -- 2.6.2 Oxytocin -- 2.6.3 Neuropeptide Y -- 2.7 Miscellaneous compounds -- 2.8 Conclusions -- 2.9 References -- 3. MicroRNAs as modulators of endothelial differentiation of stem cells: role in vascular regenerative medicine -- 3.1 Introduction -- 3.2 MicroRNAs -- 3.3 Stem cells in vascular regeneration.
3.4 Endothelial enriched miRNAs and their role in angiogenesis -- 3.4.1 miR-126 -- 3.4.2 miR-17/92 cluster -- 3.4.3 miR-15a/16 -- 3.4.4 miR-130a -- 3.4.5 miR-21 -- 3.5 Post-ischemic collateral growth and miRNAs -- 3.6 miRNAs regulating endothelial differentiation of EPCs and angiogenesis -- 3.6.1 Role in proliferation -- 3.6.2 Role in senescence -- 3.6.3 Role in differentiation -- 3.7 ESC-specific miRNAs regulating their commitment to ECs -- 3.8 IPSCs and miRNAs -- 3.9 Future applications and outlook -- 3.10 References -- 4. Cells for the repair of damaged skin and cartilage -- 4.1 Introduction -- 4.2 Stem cells in the repair of damaged skin -- 4.2.1 Skin structure and function -- 4.2.2 Skin diseases and injuries -- 4.2.3 Conventional therapy of skin wounds -- 4.2.4 Cellular therapy of skin wounds -- 4.2.5 Skin bioengineering -- 4.2.6 Stem cells for cosmetic purposes -- 4.3 Stem cells for the repair of damaged cartilage -- 4.3.1 Cartilage structure and function -- 4.3.2 Diseases and injury to cartilage -- 4.3.3 Approaches for repair of cartilage -- 4.3.4 Repair of damaged cartilage by implantation of stem cells -- 4.3.5 Transplantation of MSCs -- 4.3.6 Scaffolds for cartilage repair -- 4.4 Whether in vitro structures adequately meet in vivo functions? -- 4.5 Future prospects of cell therapies -- 4.6 References -- 5. The skeletal muscle stem cells: biology and use in regenerative medicine -- 5.1 Introduction -- 5.2 An overview of satellite cell markers -- 5.3 The origin of satellite cells and their role in muscle repair and regeneration -- 5.4 Isolation and culture of muscle stem cells -- 5.5 Proliferation and differentiation of myogenic stem cells -- 5.6 Skeletal muscle cells in regenerative therapy and drug development -- 5.6.1 Satellite cells and SkMs for the treatment of muscular dystrophies.
5.6.2 Satellite cells and SkMs for the treatment of sphincter incontinence -- 5.6.3 Satellite cells and SkMs for cardiomyopathies -- 5.7 Conclusions -- 5.8 References -- 6. Nanoparticle-based genetic engineering of mesenchymal stem cells -- 6.1 Introduction -- 6.2 Genetic modification of MSCs -- 6.3 Methods to genetically modify MSCs -- 6.4 Exploiting nanoparticle technology for genetic priming of stem cells -- 6.5 Nanoparticle-based systems for gene transfer -- 6.5.1 Polymer-based nanoparticles -- 6.5.2 Inorganic nanoparticles -- 6.6 The mechanism of nanoparticle-based gene transfer -- 6.6.1 Uptake pathways -- 6.6.2 Endo-lysosomal escape -- 6.7 Factors influencing nanoparticle-based gene transfer -- 6.7.1 Characteristics of nanoparticles as determinants of gene transfer efficiency -- 6.7.2 Characteristics of cells as determinants of gene transfer efficiency -- 6.8 Recent advances and modifications in nanoparticle-based gene transfer -- 6.8.1 Beacon-like modification -- 6.8.2 Missile-like modification -- 6.9 Conclusions -- 6.10 References -- 7. Neural stem cells in regenerative medicine -- 7.1 Introduction -- 7.2 Chronology of events involving NSCs -- 7.3 NSCs in embryonic period -- 7.4 NSCs in adults -- 7.5 Identification of the neural stem cells -- 7.6 Regulation of NSCs -- 7.7 Neurogenic niche microenvironment -- 7.8 NSCs in cell-based therapy -- 7.8.1 NSCs for cell-based therapy of Parkinson's disease -- 7.8.2 NSCs for cell-based therapy of AD -- 7.8.3 NSCs for cell-based therapy for spinal cord injury -- 7.8.4 NSCs for cell-based therapy of stroke -- 7.9 Conclusion -- 7.10 References -- 8. "Paracrining" the heart with stem cells -- 8.1 Introduction -- 8.2 Overview of cell transplantation for cardiac repair -- 8.3 Cellular cardiomyoplasty and paracrine factors -- 8.3.1 Skeletal myoblasts -- 8.3.2 BM-derived stem cells -- 8.3.3 Sca1+/CD31- cells.
8.3.4 c-Kit+ cells -- 8.3.5 Pluripotent stem cells derived cells -- 8.4 Conclusion -- 8.5 References -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Preface -- Contributing authors -- List of abbreviations -- 1. Human pluripotent stem-cell-derived vascular cells: in vitro model for angiogenesis and drug discovery -- 1.1 Introduction -- 1.2 Formation of blood vessels -- 1.3 Current models to assess angiogenesis -- 1.3.1 In vitro assays -- 1.3.2 In vivo models of angiogenesis -- 1.4 Promise of stem-cell-based angiogenesis models -- 1.5 Differentiation of human PSCs into vascular lineages -- 1.5.1 Embryoid body-mediated differentiation -- 1.5.2 Co-culture mediated differentiation -- 1.5.3 Directed vascular differentiation with specific factors and matrix components -- 1.6 Building blood vessels in vitro - PSC models of angiogenesis -- 1.6.1 2D co-culture angiogenesis assay -- 1.6.2 Embryoid body-based 3D angiogenesis models -- 1.6.3 3D vascular spheroidal co-culture model -- 1.6.4 In vitro 3D vascularized tissue equivalent (vascular organoids) model -- 1.7 Conclusions and future outlook -- 1.8 References -- 2. Role of small molecules in the cardiac differentiation of mesenchymal stem cells -- 2.1 Introduction -- 2.2 Epigenetic modifiers and cardiomyogenic differentiation of MSCs -- 2.2.1 5-azacytidine -- 2.2.2 Zebularine -- 2.2.3 RG108 -- 2.3 Cardioprotective compounds -- 2.3.1 Statins -- 2.3.2 Resveratrol -- 2.3.3 Trimetazidine -- 2.3.4 Pioglitazone -- 2.4 Fatty acids and ipids -- 2.4.1 Phorbol myristate acetate -- 2.4.2 Sphingosine-1-phosphate -- 2.5 Acids -- 2.5.1 Salvianolic acid B -- 2.5.2 Retinoic acid -- 2.6 Peptides and peptide hormones -- 2.6.1 Triiodo-L-thyronine -- 2.6.2 Oxytocin -- 2.6.3 Neuropeptide Y -- 2.7 Miscellaneous compounds -- 2.8 Conclusions -- 2.9 References -- 3. MicroRNAs as modulators of endothelial differentiation of stem cells: role in vascular regenerative medicine -- 3.1 Introduction -- 3.2 MicroRNAs -- 3.3 Stem cells in vascular regeneration.

3.4 Endothelial enriched miRNAs and their role in angiogenesis -- 3.4.1 miR-126 -- 3.4.2 miR-17/92 cluster -- 3.4.3 miR-15a/16 -- 3.4.4 miR-130a -- 3.4.5 miR-21 -- 3.5 Post-ischemic collateral growth and miRNAs -- 3.6 miRNAs regulating endothelial differentiation of EPCs and angiogenesis -- 3.6.1 Role in proliferation -- 3.6.2 Role in senescence -- 3.6.3 Role in differentiation -- 3.7 ESC-specific miRNAs regulating their commitment to ECs -- 3.8 IPSCs and miRNAs -- 3.9 Future applications and outlook -- 3.10 References -- 4. Cells for the repair of damaged skin and cartilage -- 4.1 Introduction -- 4.2 Stem cells in the repair of damaged skin -- 4.2.1 Skin structure and function -- 4.2.2 Skin diseases and injuries -- 4.2.3 Conventional therapy of skin wounds -- 4.2.4 Cellular therapy of skin wounds -- 4.2.5 Skin bioengineering -- 4.2.6 Stem cells for cosmetic purposes -- 4.3 Stem cells for the repair of damaged cartilage -- 4.3.1 Cartilage structure and function -- 4.3.2 Diseases and injury to cartilage -- 4.3.3 Approaches for repair of cartilage -- 4.3.4 Repair of damaged cartilage by implantation of stem cells -- 4.3.5 Transplantation of MSCs -- 4.3.6 Scaffolds for cartilage repair -- 4.4 Whether in vitro structures adequately meet in vivo functions? -- 4.5 Future prospects of cell therapies -- 4.6 References -- 5. The skeletal muscle stem cells: biology and use in regenerative medicine -- 5.1 Introduction -- 5.2 An overview of satellite cell markers -- 5.3 The origin of satellite cells and their role in muscle repair and regeneration -- 5.4 Isolation and culture of muscle stem cells -- 5.5 Proliferation and differentiation of myogenic stem cells -- 5.6 Skeletal muscle cells in regenerative therapy and drug development -- 5.6.1 Satellite cells and SkMs for the treatment of muscular dystrophies.

5.6.2 Satellite cells and SkMs for the treatment of sphincter incontinence -- 5.6.3 Satellite cells and SkMs for cardiomyopathies -- 5.7 Conclusions -- 5.8 References -- 6. Nanoparticle-based genetic engineering of mesenchymal stem cells -- 6.1 Introduction -- 6.2 Genetic modification of MSCs -- 6.3 Methods to genetically modify MSCs -- 6.4 Exploiting nanoparticle technology for genetic priming of stem cells -- 6.5 Nanoparticle-based systems for gene transfer -- 6.5.1 Polymer-based nanoparticles -- 6.5.2 Inorganic nanoparticles -- 6.6 The mechanism of nanoparticle-based gene transfer -- 6.6.1 Uptake pathways -- 6.6.2 Endo-lysosomal escape -- 6.7 Factors influencing nanoparticle-based gene transfer -- 6.7.1 Characteristics of nanoparticles as determinants of gene transfer efficiency -- 6.7.2 Characteristics of cells as determinants of gene transfer efficiency -- 6.8 Recent advances and modifications in nanoparticle-based gene transfer -- 6.8.1 Beacon-like modification -- 6.8.2 Missile-like modification -- 6.9 Conclusions -- 6.10 References -- 7. Neural stem cells in regenerative medicine -- 7.1 Introduction -- 7.2 Chronology of events involving NSCs -- 7.3 NSCs in embryonic period -- 7.4 NSCs in adults -- 7.5 Identification of the neural stem cells -- 7.6 Regulation of NSCs -- 7.7 Neurogenic niche microenvironment -- 7.8 NSCs in cell-based therapy -- 7.8.1 NSCs for cell-based therapy of Parkinson's disease -- 7.8.2 NSCs for cell-based therapy of AD -- 7.8.3 NSCs for cell-based therapy for spinal cord injury -- 7.8.4 NSCs for cell-based therapy of stroke -- 7.9 Conclusion -- 7.10 References -- 8. "Paracrining" the heart with stem cells -- 8.1 Introduction -- 8.2 Overview of cell transplantation for cardiac repair -- 8.3 Cellular cardiomyoplasty and paracrine factors -- 8.3.1 Skeletal myoblasts -- 8.3.2 BM-derived stem cells -- 8.3.3 Sca1+/CD31- cells.

8.3.4 c-Kit+ cells -- 8.3.5 Pluripotent stem cells derived cells -- 8.4 Conclusion -- 8.5 References -- Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.