ORPP logo
Image from Google Jackets

An Introduction to Aircraft Thermal Management.

By: Material type: TextTextPublisher: Warrendale : SAE International, 2019Copyright date: ©2020Edition: 1st edDescription: 1 online resource (206 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780768095524
Subject(s): Genre/Form: Additional physical formats: Print version:: An Introduction to Aircraft Thermal ManagementDDC classification:
  • 629.134
LOC classification:
  • TL574.A45 A354 2018
Online resources:
Contents:
Cover -- Table of Contents -- Introduction -- CHAPTER 1 Why Aircraft Thermal Management Matters -- 1.1 Introduction -- 1.2 Temperature Requirements -- 1.3 Removing Heat -- 1.4 Protection -- 1.5 Increased Importance -- 1.5.1 Composite Materials -- 1.5.1.1 Advantages over Metals -- 1.5.1.2 Disadvantages of Using Composites -- 1.5.2 Higher Heat Loads -- 1.5.3 More Electric Aircraft -- 1.5.3.1 No-Bleed Systems -- 1.5.3.2 Electric Actuators -- 1.5.3.3 Challenges -- References -- CHAPTER 2 Temperature and Thermal-Related Requirements -- 2.1 Introduct ion -- 2.2 Outside Ambient Conditions -- 2.2.1 Climate and Aircraft Performance -- 2.2.1.1 Standard Day -- 2.2.1.2 Environmental Envelope -- 2.2.1.3 Safe Operations -- 2.2.1.4 Performance -- 2.2.1.5 Operational Requirements and Limits -- 2.2.1.6 OAT and Airplane Performance -- 2.2.1.7 MIL-HDBK-310 -- 2.2.2 Boundary Temperature Calculations -- 2.2.2.1 Ground -- 2.2.2.2 Sky -- 2.2.2.3 Ram Air -- 2.2.3 Boundary Pressure Calculations -- 2.2.3.1 Pounds Mass versus Pounds Force -- 2.2.3.2 Total (Ram) Pressure -- 2.2.4 Humidity -- 2.2.5 Solar Flux -- 2.2.6 Wind Speed -- 2.3 Pressurized Volume -- 2.3.1 Passenger Cabin and Flight Deck (Thermal Comfort) -- 2.3.1.1 Thermal Comfort Parameters -- 2.3.1.2 Thermal Load -- 2.3.1.3 Predicted Mean Vote -- 2.3.1.4 Predicted Percentage Dissatisfied -- 2.3.2 Cargo Compartments -- 2.3.3 Equipment -- 2.4 Unpressurized Area -- 2.4.1 Fuel -- 2.4.2 Hydraulics -- 2.5 Structure -- 2.5.1 External Bulk -- 2.5.2 Internal -- References -- CHAPTER 3 Airplane-Generated Heat Sources -- 3.1 Introduction -- 3.2 Occupants -- 3.2.1 Sensible Heat -- 3.2.2 Latent Heat -- 3.2.3 Passengers and Crew -- 3.2.4 Live Animal Cargo -- 3.2.5 Avionics and Electrical Equipment -- 3.3 Flight Controls and Hydraulic Systems -- 3.3.1 Hydraulic -- 3.3.2 Electric -- 3.3.3 Flight Control Thermal Impact.
3.4 Lights -- 3.5 Power Feeders -- 3.5.1 Electromagnetic Interference -- 3.5.2 Inductive Loads -- 3.6 Brakes -- 3.6.1 Brake Heat Sink -- 3.6.2 Brake Temperatures -- 3.6.3 Brake Heating during Successive Missions -- 3.6.4 MLG Wheel Well -- 3.6.5 BTMS Selection at Gate Release -- 3.6.6 Brake Fans -- 3.6.7 Thrust Reverses -- 3.6.8 Fuse Plugs -- 3.7 Environmental Control System -- 3.7.1 Air Supply -- 3.7.2 Packs -- 3.7.3 Fans -- 3.7.4 Anti-icing/Deicing Systems -- References -- CHAPTER 4 External Heat Sources -- 4.1 Introduction -- 4.2 Solar Heating -- 4.2.1 The Sun -- 4.2.2 Incident Solar Load -- 4.2.3 Time of Day and Surface Orientation -- 4.2.4 Solar Absorptance and Reflectance -- 4.2.5 Transmittance -- 4.2.6 Modeling Terrestrial Radiation -- 4.2.6.1 Extraterrestrial Radiation -- 4.2.6.2 Declination Angle -- 4.2.6.3 Solar Time -- 4.2.6.4 Zenith Angle -- 4.2.6.5 Altitude or Elevation Angle -- 4.2.6.6 Air Mass Model -- 4.2.6.7 Clear Sky Model -- 4.3 Aerodynamic Heating -- 4.3.1 Subsonic Flight -- 4.3.2 Supersonic Flight -- 4.4 Lightning -- References -- CHAPTER 5 Aircraft Heat Sinks -- 5.1 Introduction -- 5.2 Ambient Air -- 5.2.1 Structure and Unpressurized Ambient Cooling -- 5.2.2 Systems Cooling -- 5.2.2.1 Ram-Air Systems -- 5.2.2.2 Skin Heat Exchangers -- 5.2.2.3 Cabin Exhaust -- 5.3 Sky -- 5.4 Fuel -- 5.4.1 Thermal Capacitance -- 5.4.2 Fuel Supply Line and Energy Recovery -- Reference -- CHAPTER 6 Fires and Failures -- 6.1 Introduction -- 6.2 Fires -- 6.2.1 MLG Wheel Well -- 6.2.2 Engine and APU -- 6.2.3 Cargo Compartment -- 6.2.3.1 Class A -- 6.2.3.2 Class B -- 6.2.3.3 Class C -- 6.2.3.4 Class E -- 6.2.3.5 Class F -- 6.2.3.6 Cargo Liners -- 6.2.4 Passenger and Crew Area -- 6.2.4.1 Prevention -- 6.2.4.2 Fire Detection -- 6.2.4.3 Fire Suppression -- 6.2.5 Electrical/Electronic Bay and Lower Lobe -- 6.2.5.1 787 Lithium-Ion Battery Fires.
6.2.5.2 Why Lithium Ion? -- 6.2.6 Fuel Tank Fires -- 6.2.7 External Fuel Fire -- 6.3 System Failures -- 6.3.1 Burst Ducts -- 6.3.2 Leaking Ducts -- References -- CHAPTER 7 Environmental Control Systems -- 7.1 Introduction -- 7.2 Cabin Temperature and Pressure Control -- 7.2.1 Air Supply (1 to 2) -- 7.2.1.1 No-Bleed System -- 7.2.1.2 Ground-Based Operation -- 7.2.2 Air Conditioning (3) -- 7.2.2.1 AIR Cycle Machine -- 7.2.2.2 Vapor Cycle Machine -- 7.2.2.3 AIR Cycle Versus Vapor Cycle Machine -- 7.2.3 Air Distribution (4-8) -- 7.2.3.1 Recirculation System -- 7.2.3.2 Main Cabin -- 7.2.3.3 Flight Deck -- 7.2.4 Cargo Heat and Cargo Air Conditioning -- 7.2.5 Cabin Pressure Control -- 7.3 Venting and Chiller Exhaust -- 7.4 EE Cooling -- 7.4.1 Active Cooling -- 7.4.2 Passive Cooling -- 7.4.3 Flight Critical Equipment -- 7.5 Protective Systems -- 7.5.1 Wing Anti-ice -- 7.5.1.1 Thermal -- 7.5.1.2 Chemical -- 7.5.1.3 Mechanical -- 7.5.2 Engine Anti-ice -- 7.5.3 Ice Detection -- 7.5.4 Air Data Sensors -- 7.5.5 Windshields -- References -- CHAPTER 8 Thermal Design -- 8.1 Introduction -- 8.2 Insulation Types -- 8.2.1 Fiberglass -- 8.2.2 Open Cell Foams -- 8.2.2.1 Polyimide -- 8.2.2.2 Melamine -- 8.2.3 Closed Cell Foams -- 8.2.4 Ceramics -- 8.2.5 Felt -- 8.2.6 Aerogels -- 8.3 Insulation Applications -- 8.3.1 Fuselage -- 8.3.2 Ducting and Hot Pack Components -- 8.3.3 Engine and Auxiliary Power Unit (APU) -- 8.3.4 Cargo Compartments -- 8.3.5 Insulation Placement: Heat Source or Receiver -- 8.4 Surface Coatings and Applications -- 8.4.1 Low Solar Absorptivity Paints -- 8.4.2 Low Emissivity Coatings -- 8.5 Radiation Shields -- 8.6 Phase-Change Materials -- 8.7 Intumescent Paints -- 8.8 Ablation Materials -- 8.9 Increase Heat Sink -- 8.9.1 Ram Air -- 8.9.2 Fuel -- 8.9.2.1 Fuel Flammability -- 8.9.2.2 Nitrogen-Generating Systems -- 8.9.2.3 Systems Cooling.
8.9.2.4 Increasing Ambient Cooling -- 8.10 Reduce Heat Generation -- 8.11 Spot Cooling -- 8.11.1 Unpressurized Air -- 8.11.2 Pressurized Air -- 8.12 Modify Material -- References -- CHAPTER 9 Analytical Modeling -- 9.1 Introduction -- 9.2 Mathematical Modeling of Heat Transfer -- 9.2.1 Thermal Resistances -- 9.2.1.1 Conduction -- 9.2.1.2 Convection -- 9.2.1.3 Radiation -- 9.2.2 Thermal Capacitance -- 9.2.3 Energy Sources -- 9.2.4 Mass Transfer (Fluid Flow) -- 9.2.5 Analytical Modeling Using the Electrical Analogy -- 9.2.5.1 Series Resistance -- 9.2.5.2 Parallel Resistance -- 9.2.5.3 Example: Heat Transfer from an Insulated Hot-Air Duct -- 9.2.5.4 Iterative Method -- 9.3 Mathematical Modeling of Airflow Systems -- 9.3.1 Bernoulli's Equation -- 9.3.1.1 Head -- 9.3.1.2 Gases -- 9.3.2 Pressure Generation: Fans and Pumps -- 9.3.2.1 Fan Pressure -- 9.3.2.2 Pump Head -- 9.3.3 System Pressure Drop -- 9.3.3.1 Frictional Losses -- 9.3.3.2 Loss Coefficients -- 9.3.4 Flow Calculation -- References -- CHAPTER 10 Analytical Software -- 10.1 Introduction -- 10.2 Thermal/Fluid Systems -- 10.2.1 SINDA -- 10.2.2 Computer-Aided Design (CAD) Embedded -- 10.3 1-D Network Flow -- 10.3.1 System 1-D CFD -- 10.3.2 Component 3-D CFD -- 10.4 Multi-domain/Co-simulation -- 10.5 Computational Fluid Dynamics -- 10.5.1 External Flows -- 10.5.2 Internal Flows -- 10.5.3 Advantages and Limitations -- 10.5.4 Expanded Use -- 10.6 Pre-processing -- 10.7 Post-processing -- 10.8 General Programming Environments -- 10.9 Tool Source -- 10.9.1 In-house -- 10.9.2 In-house versus COTS Software -- 10.9.3 Open Source -- 10.9.4 Government -- 10.10 Software Evaluation and Selection -- References -- CHAPTER 11 Testing -- 11.1 Introduction -- 11.2 Identifying the Need -- 11.2.1 Analytical Uncertainty and Design Margins -- 11.2.2 Certification Requirements -- 11.2.3 System Criticality.
11.3 Material Thermal and Surface Optical Properties -- 11.3.1 Thermal Conductivity -- 11.3.1.1 Guarded Hot Plate -- 11.3.1.2 Comparative Cut-Bar Method -- 11.3.1.3 Composite Materials -- 11.3.2 Specific Heat -- 11.3.3 Infrared Emissivity and Reflectivity -- 11.3.4 Solar Absorptance and Reflectance -- 11.3.5 In-Service Degradation of Properties -- 11.3.5.1 Materials -- 11.3.5.2 Surfaces -- 11.4 FAA Fire Testing -- 11.4.1 Materials -- 11.4.1.1 FAA Fire Test Handbook -- 11.4.1.2 Burn Resistance -- 11.4.1.3 BurnThrough -- 11.4.2 Systems -- 11.4.2.1 Cargo -- 11.4.2.2 Heat Generation -- 11.5 Model Validation -- 11.5.1 Temperatures -- 11.5.1.1 Thermometers -- 11.5.1.2 Probes -- 11.5.2 Fluid Flow and Pressure Drops -- 11.5.2.1 Pitot Tube -- 11.5.2.2 Manometers -- 11.5.2.3 Mechanical Pressure Gauges -- 11.5.2.4 Electromechanical -- 11.5.2.5 Hot-Wire Anemometers -- 11.5.2.6 Ultrasonic Meters -- 11.6 Testing Boundary Conditions -- 11.7 Testing Standards and Procedures -- 11.7.1 Industry Trade Organizations -- 11.7.2 Engineering Societies -- 11.7.3 Military -- 11.8 Systems Testing -- 11.9 Airplane Testing -- 11.9.1 Data Extrapolation -- References -- CHAPTER 12 Military Aircraft Thermal Management -- 12.1 Introduction -- 12.2 Commercial Airframes -- 12.2.1 Advantages -- 12.2.2 Disadvantages -- 12.2.3 Military Avionics -- 12.3 Bombers -- 12.4 Fighters -- 12.5 Vertical Lift -- 12.6 Directed Energy Weapons (DEWs) -- References -- Nomenclature -- About the Author -- Index.
Summary: Fully illustrated and amply referenced, An Introduction to Aircraft Thermal Management provides a very balanced approach between theory and practice, best practices and technical insights. It is a must-have reference for both young engineers starting in the filed and for seasoned professionals willing to re-sharpen their skills.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Table of Contents -- Introduction -- CHAPTER 1 Why Aircraft Thermal Management Matters -- 1.1 Introduction -- 1.2 Temperature Requirements -- 1.3 Removing Heat -- 1.4 Protection -- 1.5 Increased Importance -- 1.5.1 Composite Materials -- 1.5.1.1 Advantages over Metals -- 1.5.1.2 Disadvantages of Using Composites -- 1.5.2 Higher Heat Loads -- 1.5.3 More Electric Aircraft -- 1.5.3.1 No-Bleed Systems -- 1.5.3.2 Electric Actuators -- 1.5.3.3 Challenges -- References -- CHAPTER 2 Temperature and Thermal-Related Requirements -- 2.1 Introduct ion -- 2.2 Outside Ambient Conditions -- 2.2.1 Climate and Aircraft Performance -- 2.2.1.1 Standard Day -- 2.2.1.2 Environmental Envelope -- 2.2.1.3 Safe Operations -- 2.2.1.4 Performance -- 2.2.1.5 Operational Requirements and Limits -- 2.2.1.6 OAT and Airplane Performance -- 2.2.1.7 MIL-HDBK-310 -- 2.2.2 Boundary Temperature Calculations -- 2.2.2.1 Ground -- 2.2.2.2 Sky -- 2.2.2.3 Ram Air -- 2.2.3 Boundary Pressure Calculations -- 2.2.3.1 Pounds Mass versus Pounds Force -- 2.2.3.2 Total (Ram) Pressure -- 2.2.4 Humidity -- 2.2.5 Solar Flux -- 2.2.6 Wind Speed -- 2.3 Pressurized Volume -- 2.3.1 Passenger Cabin and Flight Deck (Thermal Comfort) -- 2.3.1.1 Thermal Comfort Parameters -- 2.3.1.2 Thermal Load -- 2.3.1.3 Predicted Mean Vote -- 2.3.1.4 Predicted Percentage Dissatisfied -- 2.3.2 Cargo Compartments -- 2.3.3 Equipment -- 2.4 Unpressurized Area -- 2.4.1 Fuel -- 2.4.2 Hydraulics -- 2.5 Structure -- 2.5.1 External Bulk -- 2.5.2 Internal -- References -- CHAPTER 3 Airplane-Generated Heat Sources -- 3.1 Introduction -- 3.2 Occupants -- 3.2.1 Sensible Heat -- 3.2.2 Latent Heat -- 3.2.3 Passengers and Crew -- 3.2.4 Live Animal Cargo -- 3.2.5 Avionics and Electrical Equipment -- 3.3 Flight Controls and Hydraulic Systems -- 3.3.1 Hydraulic -- 3.3.2 Electric -- 3.3.3 Flight Control Thermal Impact.

3.4 Lights -- 3.5 Power Feeders -- 3.5.1 Electromagnetic Interference -- 3.5.2 Inductive Loads -- 3.6 Brakes -- 3.6.1 Brake Heat Sink -- 3.6.2 Brake Temperatures -- 3.6.3 Brake Heating during Successive Missions -- 3.6.4 MLG Wheel Well -- 3.6.5 BTMS Selection at Gate Release -- 3.6.6 Brake Fans -- 3.6.7 Thrust Reverses -- 3.6.8 Fuse Plugs -- 3.7 Environmental Control System -- 3.7.1 Air Supply -- 3.7.2 Packs -- 3.7.3 Fans -- 3.7.4 Anti-icing/Deicing Systems -- References -- CHAPTER 4 External Heat Sources -- 4.1 Introduction -- 4.2 Solar Heating -- 4.2.1 The Sun -- 4.2.2 Incident Solar Load -- 4.2.3 Time of Day and Surface Orientation -- 4.2.4 Solar Absorptance and Reflectance -- 4.2.5 Transmittance -- 4.2.6 Modeling Terrestrial Radiation -- 4.2.6.1 Extraterrestrial Radiation -- 4.2.6.2 Declination Angle -- 4.2.6.3 Solar Time -- 4.2.6.4 Zenith Angle -- 4.2.6.5 Altitude or Elevation Angle -- 4.2.6.6 Air Mass Model -- 4.2.6.7 Clear Sky Model -- 4.3 Aerodynamic Heating -- 4.3.1 Subsonic Flight -- 4.3.2 Supersonic Flight -- 4.4 Lightning -- References -- CHAPTER 5 Aircraft Heat Sinks -- 5.1 Introduction -- 5.2 Ambient Air -- 5.2.1 Structure and Unpressurized Ambient Cooling -- 5.2.2 Systems Cooling -- 5.2.2.1 Ram-Air Systems -- 5.2.2.2 Skin Heat Exchangers -- 5.2.2.3 Cabin Exhaust -- 5.3 Sky -- 5.4 Fuel -- 5.4.1 Thermal Capacitance -- 5.4.2 Fuel Supply Line and Energy Recovery -- Reference -- CHAPTER 6 Fires and Failures -- 6.1 Introduction -- 6.2 Fires -- 6.2.1 MLG Wheel Well -- 6.2.2 Engine and APU -- 6.2.3 Cargo Compartment -- 6.2.3.1 Class A -- 6.2.3.2 Class B -- 6.2.3.3 Class C -- 6.2.3.4 Class E -- 6.2.3.5 Class F -- 6.2.3.6 Cargo Liners -- 6.2.4 Passenger and Crew Area -- 6.2.4.1 Prevention -- 6.2.4.2 Fire Detection -- 6.2.4.3 Fire Suppression -- 6.2.5 Electrical/Electronic Bay and Lower Lobe -- 6.2.5.1 787 Lithium-Ion Battery Fires.

6.2.5.2 Why Lithium Ion? -- 6.2.6 Fuel Tank Fires -- 6.2.7 External Fuel Fire -- 6.3 System Failures -- 6.3.1 Burst Ducts -- 6.3.2 Leaking Ducts -- References -- CHAPTER 7 Environmental Control Systems -- 7.1 Introduction -- 7.2 Cabin Temperature and Pressure Control -- 7.2.1 Air Supply (1 to 2) -- 7.2.1.1 No-Bleed System -- 7.2.1.2 Ground-Based Operation -- 7.2.2 Air Conditioning (3) -- 7.2.2.1 AIR Cycle Machine -- 7.2.2.2 Vapor Cycle Machine -- 7.2.2.3 AIR Cycle Versus Vapor Cycle Machine -- 7.2.3 Air Distribution (4-8) -- 7.2.3.1 Recirculation System -- 7.2.3.2 Main Cabin -- 7.2.3.3 Flight Deck -- 7.2.4 Cargo Heat and Cargo Air Conditioning -- 7.2.5 Cabin Pressure Control -- 7.3 Venting and Chiller Exhaust -- 7.4 EE Cooling -- 7.4.1 Active Cooling -- 7.4.2 Passive Cooling -- 7.4.3 Flight Critical Equipment -- 7.5 Protective Systems -- 7.5.1 Wing Anti-ice -- 7.5.1.1 Thermal -- 7.5.1.2 Chemical -- 7.5.1.3 Mechanical -- 7.5.2 Engine Anti-ice -- 7.5.3 Ice Detection -- 7.5.4 Air Data Sensors -- 7.5.5 Windshields -- References -- CHAPTER 8 Thermal Design -- 8.1 Introduction -- 8.2 Insulation Types -- 8.2.1 Fiberglass -- 8.2.2 Open Cell Foams -- 8.2.2.1 Polyimide -- 8.2.2.2 Melamine -- 8.2.3 Closed Cell Foams -- 8.2.4 Ceramics -- 8.2.5 Felt -- 8.2.6 Aerogels -- 8.3 Insulation Applications -- 8.3.1 Fuselage -- 8.3.2 Ducting and Hot Pack Components -- 8.3.3 Engine and Auxiliary Power Unit (APU) -- 8.3.4 Cargo Compartments -- 8.3.5 Insulation Placement: Heat Source or Receiver -- 8.4 Surface Coatings and Applications -- 8.4.1 Low Solar Absorptivity Paints -- 8.4.2 Low Emissivity Coatings -- 8.5 Radiation Shields -- 8.6 Phase-Change Materials -- 8.7 Intumescent Paints -- 8.8 Ablation Materials -- 8.9 Increase Heat Sink -- 8.9.1 Ram Air -- 8.9.2 Fuel -- 8.9.2.1 Fuel Flammability -- 8.9.2.2 Nitrogen-Generating Systems -- 8.9.2.3 Systems Cooling.

8.9.2.4 Increasing Ambient Cooling -- 8.10 Reduce Heat Generation -- 8.11 Spot Cooling -- 8.11.1 Unpressurized Air -- 8.11.2 Pressurized Air -- 8.12 Modify Material -- References -- CHAPTER 9 Analytical Modeling -- 9.1 Introduction -- 9.2 Mathematical Modeling of Heat Transfer -- 9.2.1 Thermal Resistances -- 9.2.1.1 Conduction -- 9.2.1.2 Convection -- 9.2.1.3 Radiation -- 9.2.2 Thermal Capacitance -- 9.2.3 Energy Sources -- 9.2.4 Mass Transfer (Fluid Flow) -- 9.2.5 Analytical Modeling Using the Electrical Analogy -- 9.2.5.1 Series Resistance -- 9.2.5.2 Parallel Resistance -- 9.2.5.3 Example: Heat Transfer from an Insulated Hot-Air Duct -- 9.2.5.4 Iterative Method -- 9.3 Mathematical Modeling of Airflow Systems -- 9.3.1 Bernoulli's Equation -- 9.3.1.1 Head -- 9.3.1.2 Gases -- 9.3.2 Pressure Generation: Fans and Pumps -- 9.3.2.1 Fan Pressure -- 9.3.2.2 Pump Head -- 9.3.3 System Pressure Drop -- 9.3.3.1 Frictional Losses -- 9.3.3.2 Loss Coefficients -- 9.3.4 Flow Calculation -- References -- CHAPTER 10 Analytical Software -- 10.1 Introduction -- 10.2 Thermal/Fluid Systems -- 10.2.1 SINDA -- 10.2.2 Computer-Aided Design (CAD) Embedded -- 10.3 1-D Network Flow -- 10.3.1 System 1-D CFD -- 10.3.2 Component 3-D CFD -- 10.4 Multi-domain/Co-simulation -- 10.5 Computational Fluid Dynamics -- 10.5.1 External Flows -- 10.5.2 Internal Flows -- 10.5.3 Advantages and Limitations -- 10.5.4 Expanded Use -- 10.6 Pre-processing -- 10.7 Post-processing -- 10.8 General Programming Environments -- 10.9 Tool Source -- 10.9.1 In-house -- 10.9.2 In-house versus COTS Software -- 10.9.3 Open Source -- 10.9.4 Government -- 10.10 Software Evaluation and Selection -- References -- CHAPTER 11 Testing -- 11.1 Introduction -- 11.2 Identifying the Need -- 11.2.1 Analytical Uncertainty and Design Margins -- 11.2.2 Certification Requirements -- 11.2.3 System Criticality.

11.3 Material Thermal and Surface Optical Properties -- 11.3.1 Thermal Conductivity -- 11.3.1.1 Guarded Hot Plate -- 11.3.1.2 Comparative Cut-Bar Method -- 11.3.1.3 Composite Materials -- 11.3.2 Specific Heat -- 11.3.3 Infrared Emissivity and Reflectivity -- 11.3.4 Solar Absorptance and Reflectance -- 11.3.5 In-Service Degradation of Properties -- 11.3.5.1 Materials -- 11.3.5.2 Surfaces -- 11.4 FAA Fire Testing -- 11.4.1 Materials -- 11.4.1.1 FAA Fire Test Handbook -- 11.4.1.2 Burn Resistance -- 11.4.1.3 BurnThrough -- 11.4.2 Systems -- 11.4.2.1 Cargo -- 11.4.2.2 Heat Generation -- 11.5 Model Validation -- 11.5.1 Temperatures -- 11.5.1.1 Thermometers -- 11.5.1.2 Probes -- 11.5.2 Fluid Flow and Pressure Drops -- 11.5.2.1 Pitot Tube -- 11.5.2.2 Manometers -- 11.5.2.3 Mechanical Pressure Gauges -- 11.5.2.4 Electromechanical -- 11.5.2.5 Hot-Wire Anemometers -- 11.5.2.6 Ultrasonic Meters -- 11.6 Testing Boundary Conditions -- 11.7 Testing Standards and Procedures -- 11.7.1 Industry Trade Organizations -- 11.7.2 Engineering Societies -- 11.7.3 Military -- 11.8 Systems Testing -- 11.9 Airplane Testing -- 11.9.1 Data Extrapolation -- References -- CHAPTER 12 Military Aircraft Thermal Management -- 12.1 Introduction -- 12.2 Commercial Airframes -- 12.2.1 Advantages -- 12.2.2 Disadvantages -- 12.2.3 Military Avionics -- 12.3 Bombers -- 12.4 Fighters -- 12.5 Vertical Lift -- 12.6 Directed Energy Weapons (DEWs) -- References -- Nomenclature -- About the Author -- Index.

Fully illustrated and amply referenced, An Introduction to Aircraft Thermal Management provides a very balanced approach between theory and practice, best practices and technical insights. It is a must-have reference for both young engineers starting in the filed and for seasoned professionals willing to re-sharpen their skills.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.