3D Imaging : Theory, Technology and Applications.
Material type:
- text
- computer
- online resource
- 9781611229226
- 621.36/7
- TA1637 -- .A133 2009eb
Intro -- 3D IMAGING THEORY, TECHNOLOGY AND APPLICATIONS -- 3D IMAGING THEORY, TECHNOLOGY AND APPLICATIONS -- CONTENTS -- PREFACE -- Chapter 1 3D IMAGING OF ABDOMINAL AORTIC ANEURYSMS: TECHNIQUES AND APPLICATIONS -- ABSTRACT -- Background -- Methods -- Results -- Conclusion -- 1. INTRODUCTION -- 1.1 Incidence and Current Opinions -- 1.2 Medical Imaging -- 2. 3D RECONSTRUCTION FROM CT SCANS -- 3. APPLICATIONS OF AAA 3D RECONSTRUCTIONS -- 4. NUMERICAL INVESTIGATIONS -- 4.1 Pre-Operative Planning for EVAR -- 4.2 Stent-Graft Design -- 4.3 Optimum Smoothing of 3D Models -- 4.4 Determining AAA Asymmetry -- 4.5 Improving Rupture Predictions -- 4.6 Pre and Post-Operative Biomechanics -- 4.6 Computer-Aided Design and Computer-Aided Manufacture -- 5. EXPERIMENTAL INVESTIGATIONS -- 5.1 In-Vitro Models -- 5.2 The Photoelastic Method -- 5.3 Improving Experimental Materials -- 5.3.1 Material Selection, Development and Testing -- 5.3.2 Application to 3D Geometries -- 5.4 Experimental Rupture Testing -- 6. CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 2 3D IMAGING OF PHASE MICROSCOPIC OBJECTS BY DIGITAL HOLOGRAPHIC METHOD -- ABSTRACT -- INTRODUCTION -- 1. CLASSICAL AND HOLOGRAPHIC METHODS OF PHASE MICROOBJECTS VISUALIZATION -- 1.1 Classical Methods of Phase Microscopic Objects Visualization -- 1.1.1 Zernike phase-contrast method -- 1.1.2 The method of interference contrast -- The method of interferomertry in an infinitely wide fringe -- The method of interferometry in fringes of finite width -- 1.2 Holography as the Method of Recoding and Reconstruction of Waves -- 1.3 Holographic Methods of Phase Microscopic Objects Visualization -- 1.3.1 History of holographic microscopy -- 1.3.2 Holographic phase-contrast method (the method of holographic addition and subtraction in an interference fringe).
1.3.3 The method of holographic interferometry in fringes of finite width -- 1.3.4 Comparison of the possibilities of the holographic methods for solution the problem of obtaining 3D images of phase microobjects -- 1.4 Digital Holographic Interference Microscope -- 2. APPLICATION OF THE DIGITAL HOLOGRAPHIC MICROSCOPY FOR PHASE MICROOBJECTS STUDY -- 2.1 DHIM Study of The 3D Morphology of Blood Erythrocytes -- Investigation of ozone therapy influence on 3D morphology of blood erythrocytes -- Investigation of 3D morphology of blood erythrocytes in hematological diseases -- DHIM investigation of blood erythrocytes 3D morphology of pregnant women in diabetes mellitus and newborn infants -- Gamma-radiation influence on 3D morphology of blood erythrocytes -- Conclusion -- 2.2 DHIM Study of Thin Transparent Films -- CONCLUSION -- REFERENCES -- Chapter 3 ELECTRON MICROSCOPE TOMOGRAPHY IN STRUCTURAL BIOLOGY -- ABSTRACT -- INTRODUCTION -- DATA ACQUISITION -- PRE-PROCESSING: ALIGNMENT AND RESTORATION -- TOMOGRAPHIC RECONSTRUCTION -- POST-PROCESSING AND INTERPRETATION OF TOMOGRAMS -- AN ILLUSTRATIVE EXAMPLE: EMT OF VACCINIA VIRUS -- HIGH PERFORMANCE COMPUTING IN EMT -- SOFTWARE TOOLS FOR EMT -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 4 THREE-DIMENSIONAL IMAGING AND PROCESSING -- ABSTRACT -- 1. INTRODUCTION -- 2. CURRENT STATUS AND PROBLEM -- 3. 3D RECONSTRUCTION ALGORITHM -- 3.1 Cone-beam CT System -- 3.1.1 Feldkamp algorithm [10] -- 3.1.2 Variations of the Feldkamp algorithm -- 3.1.2 (a) The P-FDK method [14] -- 3.1.2 (b) The T-FDK method [13] -- 3.1.2 (c) The nonlinear weighted hybrid method [29] -- 3.1.3 Simulation study -- 3.1.4 Effectiveness of reduced X-ray scatter methods -- 3.2 Tomosynthesis System -- 3.2.1 Reconstruction algorithm -- 3.2.1 (a) Conventional FBP vs. modified FBP -- 3.2.1 (b) CT vs. modified FBP.
3.2.1 (c) Metal artifact reduction processing [68] -- 4. FUTURE DIRECTIONS -- 4.1 Cone-Beam CT -- 4.2 Tomosynthesis -- REFERENCES -- Chapter 5 BIOLUMINESCENCE IN VIVO IMAGING OF ORTHOTOPICALLY IMPLANTED TUMOR CELLS IN THE PRECLINICAL DRUG DISCOVERY -- ABSTRACT -- INTRODUCTION -- Mouse models -- Subcutaneous / ectopic implantation -- Orthotopic implantation -- In vivo Imaging -- Fluorescent proteins (eGFP, RFP...) -- Bioluminescence -- Fluorescence or Bioluminescence ? -- The Use of Luciferase Marked Orthotopic Metastasizing Mouse Models in Pre-Clinical Drug Testing -- Generation of luciferase-expressing cell pools -- Detection of luciferase-expressing cells in the mouse -- Randomization -- Generation of tumor growth curves - solid tumors -- Detection of metastases in vivo - orthotopic models -- Detection of metastases in vivo - dissemination models -- Detection of luciferase-expressing cells ex vivo and in sections -- CONCLUSION -- ACKNOWLEDGMENT -- REFERENCES -- Chapter 6 3D MEDICAL IMAGING APPLICATIONS - RECONSTRUCTION AND AUTOMATIC ANALYSIS -- ABSTRACT -- 1. INTRODUCTION -- 2. 3D MEDICAL EQUIPMENT -- 2.1 Ultrasound -- 2.2 Computed Tomography (CT) -- 2.3 Magnetic Resonance Imaging (MRI) -- 2.4 Photo-Fluoroscopy -- 3. RECONSTRUCTION OF 3D VOLUME USING 2D EQUIPMENT -- 3.1 3D Volume Reconstruction Applications -- 3.2 Cost-effective 3D Setup using 2D Ultrasound -- 3.2.1 Setup -- 3.2.2 Calibration -- 3.2.3 Results -- 4. AUTOMATIC ANALYSIS -- 4.1 Image Enhancement -- 4.2 Structure Detection -- 4.3 Automated Diagnosis -- 5. DISCUSSION AND FUTURE TRENDS -- CONCLUSION -- REFERENCES -- Chapter 7 BONE MACROARCHITECTURE BY 3D IMAGING AND OSTEOPOROSIS -- ABSTRACT -- 1. CT (Computerized Tomography) Scanners -- 2. EOS™ -- 3. Three-Dimensional X-ray Absorptiometry (3D-XA) -- CONCLUSION -- REFERENCES.
Chapter 8 CLINICAL RELEVANCE OF CT- BASED COMPUTER AIDED 3D- PLANNING IN HEPATOBILIARY, PANCREATIC SURGERY AND LIVING DONOR LIVER TRANSPLANTATION -- ABSTRACT -- INTRODUCTION -- Pancreatic Tumors -- Biliary-Tract Tumors -- CONCLUSION -- Pancreatic Tumors -- Biliary- Tract Tumors -- Living Donor Liver Transplantation -- REFERENCES -- Chapter 9 ELECTRICAL RESISTIVITY IMAGING: OVERVIEW AND A CASE STUDY IN STONE CULTURAL HERITAGE -- ABSTRACT -- 1. INTRODUCTION -- 2. OVERVIEW -- 2.1 Basic Resistivity Theory -- 2.2. Electrode Arrays -- 2.3. Two versus Three-Dimensional Resistivity Imaging Surveys -- 2.4. Instrumentation and Signal Processing -- 3. CASE STUDY IN STONE CULTURAL HERITAGE -- 3.1. Description of the Site and Panels -- 3.2. Previous Investigations -- 3.3. 3-D Electric Imaging -- Data Acquisition -- Inversion -- 3.4. Results and Discussion -- 3.5. Conclusion -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 10 RESEARCH ON MEDICAL 3D IMAGING IN THAILAND -- ABSTRACT -- INTRODUCTION [1 - 2] -- THREE-DIMENSIONAL IMAGING RESEARCH IN THAILAND -- 1. Neurology -- 2. Obstetrics -- 3. Oncology -- CONCLUSION -- REFERENCES -- Chapter 11 THREE-DIMENSIONAL IMAGE RECONSTRUCTION IN MEDICAL IMAGING: CONCEPT -- ABSTRACT -- INTRODUCTION [1 - 6] -- Dimension: Many Meanings -- How to Create a Three-Dimensional Medical Image: A Concept -- REFERENCES -- Chapter12PERSONALIZEDNONINVASIVEIMAGINGOFTHREE-DIMENSIONALVOLUMETRICCARDIACELECTROPHYSIOLOGY -- Abstract -- 1.Introduction -- 2.FrameworkOverview:ASystemApproach -- 3.SystemPhysiology -- 3.1.Background -- 3.2.PersonalizedHeart-TorsoStructures -- 3.2.1.HeartRepresentation -- 3.2.2.TorsoRepresentation -- 3.2.3.CombinedHeart-TorsoModel -- 3.3.VolumetricMyocardialTMPActivityModel -- 3.4.TMP-to-BSPMappingModel -- 3.4.1.BasicAssumptionandFormulation -- 3.4.2.TMP-to-BSPModeling -- 4.InformationRecovery.
4.1.StochasticStateSpaceInterpretation -- 4.2.DualEstimationofTMPandTissueProperty -- 4.2.1.VolumetricMyocardialTMPEstimationAlgorithm -- 4.2.2.ParameterIdentificationAlgorithm -- 4.2.3.DualEstimationofTMPandTissueProperty -- 4.3.IdentificationandAnalysisofElectrophysiologicalSubstrates -- 5.ApplicationExample:SubstrateImaginginPostMyocardialInfarction -- 5.1.Initialization -- 5.2.SubstrateImagingandQuantitativeEvaluation -- 5.3.Experiments -- 5.3.1.ExperimentalDataandDataProcessing -- 5.3.2.PersonalizedCardiacElectrophysiologicalImaging -- 5.3.3.QuantitativeValidationandComparison -- 5.3.4.Discussion -- ElectricalAnalysisofArrhythmogenicSubstrate -- ParameterEstimation -- 6.Conclusion -- ModelingofSystemPatho-PhysiologyandBiology -- PersonalizedCardiacElectromechanics -- OnlineClinicalPracticewithDistributedComputing -- References -- Chapter133DEUCLIDEANRECONSTRUCTIONOFSTRUCTUREDSCENESFROMUNCALIBRATEDIMAGES -- Abstract -- 1Introduction -- 2CameraMatrixandCalibration -- 2.1Cameraprojectionmatrix -- 2.2Theimageoftheabsoluteconicandcameracalibration -- 3RecoveryofProjectionMatrix -- 3.1Projectionmatrixofasingleview -- 3.2Projectionmatricesofmultipleviews -- 4GeometricMeasurementandStructureRecovery -- 4.1Singleviewmetrology -- 4.2Optimization -- 5ExperimentswithSyntheticdata -- 5.1Comparativeresultsingoodimagingconditions -- 5.2Comparativeresultsinbadimagingconditions -- 6ExperimentswithRealImages -- 6.1Reconstructionofasingleobject -- 6.2Reconstructionofbuildingsite -- 7Conclusion -- Acknowledgment -- References -- Chapter14STRUCTURERECOVERYOFNONRIGIDOBJECTSUNDERPERSPECTIVEPROJECTIONBASEDONPOWERFACTORIZATION -- Abstract -- 1.Introduction -- 2.BackgroundonNonrigidFactorizationviaSVD -- 3.RotationConstrainedPowerFactorization -- 4.UpgradingfromAffinetoPerspectiveProjection -- 4.1.LinearRecursiveEstimation -- 4.2.NonlinearOptimizationAlgorithm.
5.ExperimentswithSyntheticData.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.