TY - BOOK AU - Reis,António J. AU - Oliveira Pedro,José J. TI - Bridge Design: Concepts and Analysis SN - 9781118927656 AV - TG300 .R457 2019 PY - 2019/// CY - Newark PB - John Wiley & Sons, Incorporated KW - Bridges-Design and construction KW - Electronic books N1 - Intro -- Title Page -- Copyright Page -- Contents -- About the Authors -- Preface -- Acknowledgements -- Chapter 1 Introduction -- 1.1 Generalities -- 1.2 Definitions and Terminology -- 1.3 Bridge Classification -- 1.4 Bridge Typology -- 1.5 Some Historical References -- 1.5.1 Masonry Bridges -- 1.5.2 Timber Bridges -- 1.5.3 Metal Bridges -- 1.5.4 Reinforced and Prestressed Concrete Bridges -- 1.5.5 Cable Supported Bridges -- References -- Chapter 2 Bridge Design: Site Data and Basic Conditions -- 2.1 Design Phases and Methodology -- 2.2 Basic Site Data -- 2.2.1 Generalities -- 2.2.2 Topographic Data -- 2.2.3 Geological and Geotechnical Data -- 2.2.4 Hydraulic Data -- 2.2.5 Other Data -- 2.3 Bridge Location. Alignment, Bridge Length and Hydraulic Conditions -- 2.3.1 The Horizontal and Vertical Alignments -- 2.3.2 The Transverse Alignment -- 2.4 Elements Integrated in Bridge Decks -- 2.4.1 Road Bridges -- 2.4.1.1 Surfacing and Deck Waterproofing -- 2.4.1.2 Walkways, Parapets and Handrails -- 2.4.1.3 Fascia Beams -- 2.4.1.4 Drainage System -- 2.4.1.5 Lighting System -- 2.4.1.6 Expansion Joints -- 2.4.2 Railway Decks -- 2.4.2.1 Track System -- 2.4.2.2 Power Traction System (Catenary System) -- 2.4.2.3 Footways, Parapets/Handrails, Drainage and Lighting Systems -- References -- Chapter 3 Actions and Structural Safety -- 3.1 Types of Actions and Limit State Design -- 3.2 Permanent Actions -- 3.3 Highway Traffic Loading - Vertical Forces -- 3.4 Braking, Acceleration and Centrifugal Forces in Highway Bridges -- 3.5 Actions on Footways or Cycle Tracks and Parapets, of Highway Bridges -- 3.6 Actions for Abutments and Walls Adjacent to Highway Bridges -- 3.7 Traffic Loads for Railway Bridges -- 3.7.1 General -- 3.7.2 Load Models -- 3.8 Braking, Acceleration and Centrifugal Forces in Railway Bridges: Nosing Forces; 3.9 Actions on Maintenance Walkways and Earth Pressure Effects for Railway Bridges -- 3.10 Dynamic Load Effects -- 3.10.1 Basic Concepts -- 3.10.2 Dynamic Effects for Railway Bridges -- 3.11 Wind Actions and Aerodynamic Stability of Bridges -- 3.11.1 Design Wind Velocities and Peak Velocities Pressures -- 3.11.2 Wind as a Static Action on Bridge Decks and Piers -- 3.11.3 Aerodynamic Response: Basic Concepts -- 3.11.3.1 Vortex Shedding -- 3.11.3.2 Divergent Amplitudes: Aerodynamic Instability -- 3.12 Hydrodynamic Actions -- 3.13 Thermal Actions and Thermal Effects -- 3.13.1 Basic Concepts -- 3.13.2 Thermal Effects -- 3.13.3 Design Values -- 3.14 Shrinkage, Creep and Relaxation in Concrete Bridges -- 3.15 Actions Due to Imposed Deformations. Differential Settlements -- 3.16 Actions Due to Friction in Bridge Bearings -- 3.17 Seismic Actions -- 3.17.1 Basis of Design -- 3.17.2 Response Spectrums for Bridge Seismic Analysis -- 3.18 Accidental Actions -- 3.19 Actions During Construction -- 3.20 Basic Criteria for Bridge Design -- References -- Chapter 4 Conceptual Design and Execution Methods -- 4.1 Concept Design: Introduction -- 4.2 Span Distribution and Deck Continuity -- 4.2.1 Span Layout -- 4.2.2 Deck Continuity and Expansion Joints -- 4.3 The Influence of the Execution Method -- 4.3.1 A Prestressed Concrete Box Girder Deck -- 4.3.2 A Steel-Concrete Composite Steel Deck -- 4.3.3 Concept Design and Execution: Preliminary Conclusions -- 4.4 Superstructure: Concrete Bridges -- 4.4.1 Options for the Bridge Deck -- 4.4.2 The Concrete Material - Main Proprieties -- 4.4.2.1 Concrete -- 4.4.2.2 Reinforcing Steel -- 4.4.2.3 Prestressing Steel -- 4.4.3 Slab and Voided Slab Decks -- 4.4.4 Ribbed Slab and Slab-Girder Decks -- 4.4.5 Precasted Slab-Girder Decks -- 4.4.6 Box Girder Decks -- 4.5 Superstructure: Steel and Steel‐Concrete Composite Bridges; 4.5.1 Options for Bridge Type: Plated Structures -- 4.5.2 Steels for Metal Bridges and Corrosion Protection -- 4.5.2.1 Materials and Weldability -- 4.5.2.2 Corrosion Protection -- 4.5.3 Slab Deck: Concrete Slabs and Orthotropic Plates -- 4.5.3.1 Concrete Slab Decks -- 4.5.3.2 Steel Orthotropic Plate Decks -- 4.5.4 Plate Girder Bridges -- 4.5.4.1 Superstructure Components -- 4.5.4.2 Preliminary Design of the Main Girders -- 4.5.4.3 Vertical Bracing System -- 4.5.4.4 Horizontal Bracing System -- 4.5.5 Box Girder Bridges -- 4.5.5.1 General -- 4.5.5.2 Superstructure Components -- 4.5.5.3 Pre-Design of Composite Box Girder Sections -- 4.5.5.4 Pre-Design of Diaphragms or Cross Frames -- 4.5.6 Typical Steel Quantities -- 4.6 Superstructure: Execution Methods -- 4.6.1 General Aspects -- 4.6.2 Execution Methods for Concrete Decks -- 4.6.2.1 General -- 4.6.2.2 Scaffoldings and Falseworks -- 4.6.2.3 Formwork Launching Girders -- 4.6.2.4 Incremental Launching -- 4.6.2.5 Cantilever Construction -- 4.6.2.6 Precasted Segmental Cantilever Construction -- 4.6.2.7 Other Methods -- 4.6.3 Erection Methods for Steel and Composite Bridges -- 4.6.3.1 Erection Methods, Transport and Erection Joints -- 4.6.3.2 Erection with Cranes Supported from the Ground -- 4.6.3.3 Incremental Launching -- 4.6.3.4 Erection by the Cantilever Method -- 4.6.3.5 Other Methods -- 4.7 Substructure: Conceptual Design and Execution Methods -- 4.7.1 Elements and Functions -- 4.7.2 Bridge Piers -- 4.7.2.1 Structural Materials and Pier Typology -- 4.7.2.2 Piers Pre-Design -- 4.7.2.3 Execution Method of the Deck and Pier Concept Design -- 4.7.2.4 Construction Methods for Piers -- 4.7.3 Abutments -- 4.7.3.1 Functions of the Abutments -- 4.7.3.2 Abutment Concepts and Typology -- 4.7.4 Bridge Foundations -- 4.7.4.1 Foundation Typology -- 4.7.4.2 Direct Foundations -- 4.7.4.3 Pile Foundations; 4.7.4.4 Special Bridge Foundations -- 4.7.4.5 Bridge Pier Foundations in Rivers -- References -- Chapter 5 Aesthetics and Environmental Integration -- 5.1 Introduction -- 5.2 Integration and Formal Aspects -- 5.3 Bridge Environment -- 5.4 Shape and Function -- 5.5 Order and Continuity -- 5.6 Slenderness and Transparency -- 5.7 Symmetries, Asymmetries and Proximity with Other Bridges -- 5.8 Piers Aesthetics -- 5.9 Colours, Shadows, and Detailing -- 5.10 Urban Bridges -- References -- Chapter 6 Superstructure: Analysis and Design -- 6.1 Introduction -- 6.2 Structural Models -- 6.3 Deck Slabs -- 6.3.1 General -- 6.3.2 Overall Bending: Shear Lag Effects -- 6.3.3 Local Bending Effects: Influence Surfaces -- 6.3.4 Elastic Restraint of Deck Slabs -- 6.3.5 Transverse Prestressing of Deck Slabs -- 6.3.6 Steel Orthotropic Plate Decks -- 6.4 Transverse Analysis of Bridge Decks -- 6.4.1 Use of Influence Lines for Transverse Load Distribution -- 6.4.2 Transverse Load Distribution Coefficients for Load Effects -- 6.4.3 Transverse Load Distribution Methods -- 6.4.3.1 Rigid Cross Beam Methods: Courbon Method -- 6.4.3.2 Transverse Load Distribution on Cross Beams -- 6.4.3.3 Extensions of the Courbon Method: Influence of Torsional Stiffness of Main Girders and Deformability of Cross Beams -- 6.4.3.4 The Orthotropic Plate Approach -- 6.4.3.5 Other Transverse Load Distribution Methods -- 6.5 Deck Analysis by Grid and FEM Models -- 6.5.1 Grid Models -- 6.5.1.1 Fundamentals -- 6.5.1.2 Deck Modelling -- 6.5.1.3 Properties of Beam Elements in Grid Models -- 6.5.1.4 Limitations and Extensions of Plane Grid Modelling -- 6.5.2 FEM Models -- 6.5.2.1 Fundamentals -- 6.5.2.2 FEM for Analysis of Bridge Decks -- 6.6 Longitudinal Analysis of the Superstructure -- 6.6.1 Generalities - Geometrical Non‐Linear Effects: Cables and Arches -- 6.6.2 Frame and Arch Effects; 6.6.3 Effect of Longitudinal Variation of Cross Sections -- 6.6.4 Torsion Effects in Bridge Decks - Non-Uniform Torsion -- 6.6.5 Torsion in Steel-Concrete Composite Decks -- 6.6.5.1 Composite Box Girder Decks -- 6.6.5.2 Composite Plate Girder Decks -- 6.6.6 Curved Bridges -- 6.6.6.1 Statics of Curved Bridges -- 6.6.6.2 Simply Supported Curved Bridge Deck -- 6.6.6.3 Approximate Method -- 6.6.6.4 Bearing System and Deck Elongations -- 6.7 Influence of Construction Methods on Superstructure Analysis -- 6.7.1 Span by Span Erection of Prestressed Concrete Decks -- 6.7.2 Cantilever Construction of Prestressed Concrete Decks -- 6.7.3 Prestressed Concrete Decks with Prefabricated Girders -- 6.7.4 Steel-Concrete Composite Decks -- 6.8 Prestressed Concrete Decks: Design Aspects -- 6.8.1 Generalities -- 6.8.2 Design Concepts and Basic Criteria -- 6.8.3 Durability -- 6.8.4 Concept of Partial Prestressed Concrete (PPC) -- 6.8.5 Particular Aspects of Bridges Built by Cantilevering -- 6.8.6 Ductility and Precasted Segmental Construction -- 6.8.6.1 Internal and External Prestressing -- 6.8.7 Hyperstatic Prestressing Effects -- 6.8.8 Deflections, Vibration and Fatigue -- 6.9 Steel and Composite Decks -- 6.9.1 Generalities -- 6.9.2 Design Criteria for ULS -- 6.9.3 Design Criteria for SLS -- 6.9.3.1 Stress Limitations and Web Breathing -- 6.9.3.2 Deflection Limitations and Vibrations -- 6.9.4 Design Criteria for Fatigue Limit State -- 6.9.5 Web Design of Plate and Box Girder Sections -- 6.9.5.1 Web Under in Plane Bending and Shear Forces -- 6.9.5.2 Flange Induced Buckling -- 6.9.5.3 Webs Under Patch Loading -- 6.9.5.4 Webs under Interaction of Internal Forces -- 6.9.6 Transverse Web Stiffeners -- 6.9.7 Stiffened Panels in Webs and Flanges -- 6.9.8 Diaphragms -- 6.10 Reference to Special Bridges: Bowstring Arches and Cable‐Stayed Bridges -- 6.10.1 Generalities; 6.10.2 Bowstring Arch Bridges UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5744616 ER -