Bioceramics and Biocomposites : From Research to Clinical Practice.
- 1st ed.
- 1 online resource (394 pages)
Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Chapter 1 Multifunctionalized Ferri‐liposomes for Hyperthermia Induced Glioma Targeting and Brain Drug Delivery -- 1.1 Introduction -- 1.1.1 Blood-brain Barrier -- 1.1.1.1 What is the Blood-brain Barrier (BBB)? -- 1.1.1.2 The BBB Formation and Composition -- 1.1.1.3 Endothelial Cell and Tight Junctions -- 1.1.1.4 Astrocytes -- 1.1.1.5 Glioma -- 1.1.2 New Strategies for Measuring Drug Transport Across the BBB -- 1.2 Liposome -- 1.2.1 Introduction -- 1.2.2 Functionalization of Liposomes -- 1.2.2.1 PEGylation -- 1.2.2.2 Ligand‐mediated Liposome Targeting -- 1.2.2.3 Cell‐penetrating Peptide (CPP) Modification -- 1.2.3 Physiologically Modified Liposomes -- 1.2.3.1 PH‐sensitive Liposome -- 1.2.3.2 Thermosensitive Liposomes -- 1.2.4 Liposome in Combinational Therapies -- 1.2.4.1 CPP and Antibody Co‐delivery System -- 1.2.4.2 Superparamagnetic Iron Oxide Nanoparticles‐Induced Hyperthermia Treatment -- 1.3 Experimental -- 1.3.1 In Vitro BBB Model Set Up -- 1.3.2 Immunostaining and Confocal Imaging -- 1.4 Liposome Synthesis -- 1.4.1 Material Characterization -- 1.4.2 DOX Release and Loading Efficiency -- 1.4.3 Liposome Permeability Study -- References -- Chapter 2 Biofabrication Techniques for Ceramics and Composite Bone Scaffolds -- 2.1 Introduction -- 2.2 Scaffolds -- 2.2.1 Materials -- 2.3 Manufacturing Processes -- 2.3.1 Extrusion‐based Processes -- 2.3.2 Vat‐photopolymerization Processes -- 2.3.3 Powder Bed Fusion Processes -- 2.3.4 Inkjet Printing Processes -- 2.4 Conclusion -- References -- Chapter 3 Developments in Hydrogel‐based Scaffolds and Bioceramics for Bone Regeneration -- 3.1 Introduction -- 3.2 Directions in the Design of Hydrogels for Bone Regeneration -- 3.2.1 On the Preparation of Bioinspired and Biomimetic Hydrogels. 3.2.2 Biofunctionalization of Non‐adhesive Macromolecules with Cell‐adhesive Peptides or Other Bioactive Molecules -- 3.2.3 Engineering of Synthetic Hydrogels with Bioactive or Biodegradable Sites -- 3.2.4 Nanoparticle‐loaded Fibrous Hydrogels for Bone Regeneration -- 3.2.5 Biomineralization and Hydrogels Bearing Negatively Charged Groups -- 3.2.5.1 Polymers Containing Acidic Functional Groups -- 3.2.5.2 Phosphorus‐containing Polymers Enhance Mineralization -- 3.3 Ca/P Biomaterials for Bone Regeneration -- 3.3.1 Introduction: Remaining Challenges -- 3.3.2 Micro‐ and Nanocomputed Tomography for the Study of Porous Ca/P Biomaterials -- 3.3.3 Preparation of 3D Porous Blocks and Granules of Ca/P Ceramics -- 3.3.3.1 Changing the Shape of Ca/P Granular Biomaterial Affects its Biomechanical Resistance -- 3.3.3.2 Changing the Shape of a Granular Biomaterial Affects its 3D Porosity -- 3.3.3.3 Changing the 3D Porosity of a Porous Biomaterial Modifies Liquid Diffusion -- 3.4 Perspectives -- Acknowledgments -- References -- Chapter 4 Zirconia‐Based Composites for Biomedical Applications -- 4.1 Introduction -- 4.2 Inert Ceramics for Biomedical Applications: Monolithic Al2O3 and ZrO2 -- 4.2.1 Alumina (a‐Al2O3) -- 4.2.2 Zirconia (ZrO2) -- 4.2.3 Inert Ceramics for Biomedical Applications: ZTA Composites -- 4.3 New Approach for Biomedical Grade Ceramics: Zirconia‐Based Composites -- 4.3.1 Y‐TZP/Al2O3 Composites -- 4.3.2 Ce‐TZP‐Based Composites -- 4.3.2.1 Ce‐TZP/Al2O3 Composites -- 4.3.2.2 Ce‐TZP/MgAl2O4 Composites -- 4.3.2.3 Ce‐TZP‐Based Composites Containing Elongated Grains -- 4.3.3 ZrO2/Hydroxyapatite Composites -- 4.4 Conclusion -- References -- Chapter 5 Bioceramics Derived from Marble and Sea Shells as Potential Bone Substitution Materials -- 5.1 Introduction -- 5.2 Biomimetic Approaches for Biomaterials Design -- 5.2.1 Apatites -- 5.2.2 Calcium Carbonates. 5.3 Biogenic Precursors for Hydroxyapatite -- 5.3.1 Marble -- 5.3.2 Sea Shells -- 5.4 Synthesis Routes -- 5.4.1 Preparation of Precursors -- 5.4.2 Basic Techniques for Hydroxyapatite Synthesis -- 5.4.2.1 Wet Precipitation -- 5.4.2.2 Mechano‐Chemical Technique -- 5.4.2.3 Hydrothermal Technique -- 5.4.2.4 Sol-Gel Technique -- 5.4.2.5 Microemulsion by High‐Pressure Homogenization (HPH) -- 5.4.3 Synthesis of Hydroxyapatite by Thermal Treatment of Marble and Shells -- 5.4.3.1 Calcination of the Raw Material -- 5.4.3.2 Calcium Oxide Conversion into Hydroxyapatite -- 5.4.4 Synthesis of Hydroxyapatite by Chemical Treatment of Marble and Shells -- 5.4.4.1 Hydrothermal Methods -- 5.4.4.2 Sol-Gel Methods -- 5.4.4.3 Microemulsion by High‐Pressure Homogenization (HPH) -- 5.5 Processing of Marble and Shells‐Derived Hydroxyapatite -- 5.5.1 Thermal Processing of the Hydroxyapatite Powder -- 5.5.2 Dense Products (Pellets) -- 5.5.3 Porous Products (Scaffolds) -- 5.5.3.1 Conventional Processing Methods -- 5.5.3.2 Solid Free‐Form (SFF) Techniques -- 5.6 Material Characterization -- 5.6.1 Chemical Composition -- 5.6.2 Structure -- 5.6.2.1 X‐Ray Diffraction (XRD) Studies -- 5.6.2.2 Fourier Transformed Infrared (FT‐IR) Spectroscopy Analyses -- 5.6.3 Morphology -- 5.6.3.1 Morphology of Powders -- 5.6.3.2 Morphology of Dense Products (Pellets) -- 5.6.3.3 Morphology of Porous Products (Scaffolds) -- 5.6.4 Mechanical Properties -- 5.6.5 Thermal Stability -- 5.6.5.1 Dimensional Stability -- 5.6.5.2 Mass Stability -- 5.7 In vitro Behavior -- 5.7.1 Biocompatibility -- 5.8 Degradation in Biological Environment -- 5.9 In vivo Performance Evaluation -- 5.10 Conclusions -- Acknowledgment -- References -- Chapter 6 Bioglasses and Glass‐Ceramics in the Na2O-CaO-MgO-SiO2-P2O5-CaF2 System -- 6.1 Introduction -- 6.2 General Technical Aspects -- 6.3 Design of Compositions. 6.3.1 CaO-MgO-SiO2 System -- 6.3.2 Na2O-CaO-SiO2 System -- 6.3.3 Modifications: Addition of B2O3, P2O5, CaF2, and Na2O to CaO-MgO-SiO2 System -- 6.4 Materials and Methods -- 6.4.1 Synthesis -- 6.4.2 Characterization Techniques -- 6.5 Structural Features of Glasses, Devitrification, and Materials' Properties -- 6.5.1 B‐ and Al‐Containing Glasses and Glass‐Ceramics -- 6.5.2 B‐Containing Glasses and Glass‐Ceramics (Al‐Free) -- 6.5.2.1 Glasses -- 6.5.2.2 Crystallization of Bulk Glasses -- 6.5.2.3 Glass‐Ceramics from Glass‐Powders Compacts -- 6.5.3 B‐Free (and Al‐Free) Glasses and Glass‐Ceramics -- 6.6 In vitro Biomineralization Ability (SBF Tests and HA Formation) -- 6.7 Cell Culture Testing and Tissue Response -- 6.8 Animal Testing and Clinical Tests -- 6.8.1 In vivo Animal Tests -- 6.8.2 Clinical Trials -- 6.9 Concluding Remarks -- Acknowledgments -- Bibliography -- Chapter 7 Electrical Functionalization and Fabrication of Nanostructured Hydroxyapatite Coatings -- 7.1 Introduction -- 7.2 Necessity and Prerequisites of Electrical Functionalization of Hydroxyapatite to Control Bone Cell Attachment -- 7.3 Computed Designing of Nanostructured Hydroxyapatite Electrical Potential (Structurally Depended Functionalization) -- 7.3.1 Introduction: Nanostructured HA as Assembled from Nanoclusters -- 7.4 HA Clusters and Nanoparticles (NPs) -- 7.4.1 Formation of HA Crystal from HA NPs in Various Conditions, Size, and Shape Effects -- 7.4.2 Main Features of Electrical Field, Charges, and Potential Inside and Outside of HA Surface -- 7.4.3 Bulk HA Crystal Structures Design (Infinite Periodical Lattice) and Electrical Potential -- 7.4.4 Imperfect Crystal with Defects -- 7.4.5 DOS for O, H, and OH Vacancies and H and OH Interstitials -- 7.4.6 Exploration of Influences of Various Atoms Substitutions in HA Structure and Properties. 7.4.7 Studies of the Substitution Influences of Mg, Sr, and Si Atoms -- 7.4.8 Studies and Calculations of Mn and Se Substitutions -- 7.4.9 Combined DOS from Substituted Atoms and OH Vacancy -- 7.4.10 First Principle to Design HA Nanostructured Surface Properties -- 7.4.10.1 Super‐Cell and Slabs Approaches for HA "Surface‐Vacuum" Nanostructure Modeling - Various Versions of the Contemporary Developed Models and Calculations, Based on Different ab Initio/DFT Approaches -- 7.4.10.2 Surface Charges and Surface Energy for Different HA Surfaces with Different Stoichoimetry in Various Models -- 7.4.11 The Electron Work Function (from Data of the HA DFT Modeling) to Characterize HA Surface Electrical Charge -- 7.4.12 Characterization of Electrical Functionalization -- 7.4.13 Eguchi Originated Technique -- 7.4.14 Prethreshold Photoelectron Spectroscopy -- 7.5 Fabrication of Nanostructured Hydroxyapatite Coatings -- 7.5.1 rf‐Magnetron Technique -- 7.5.2 Engineering of CP Coatings Having Different Morphology and Structures -- 7.5.3 Doping of the CP Coating by Substitutions -- 7.5.4 Characterization of Coatings: Physical and Chemical Properties of rf‐Magnetron CP Coatings -- 7.5.5 The Biomedical Properties of rf‐Magnetron CP Coatings -- 7.6 Biological Properties of the Electrically Functionalized Hydroxyapatite Coatings -- 7.6.1 Introduction -- 7.7 Biocompatibility of Nanostructured and Electrically Functionalized Hydroxyapatite Coatings: Subcutaneous Model -- 7.7.1 Tissue and Bone in Vivo Growth on Electrically Functionalized Hydroxyapatite Coatings on the Titanium Substrate -- 7.8 General Conclusions -- References -- Chapter 8 Bioactive Micro‐arc Calcium Phosphate Coatings on Nanostructured and Ultrafine‐Grained Bioinert Metals and Alloys. 8.1 Bioinert Alloys in Nanostructured and Ultrafine‐Grained States and Bioactive Calcium Phosphate Coatings for Medical Applications.