TY - BOOK AU - Chandramouli,Devaki AU - Liebhart,Rainer AU - Pirskanen,Juho TI - 5G for the Connected World SN - 9781119247074 AV - TK5103.2 .F584 2019 U1 - 621.38456 PY - 2019/// CY - Newark PB - John Wiley & Sons, Incorporated KW - Mobile communication systems-Technological innovations KW - Electronic books N1 - Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Foreword by Tommi Uitto -- Foreword by Karri Kuoppamaki -- Preface -- Acknowledgements -- Introduction -- Terminology -- Chapter 1 Drivers and Motivation for 5G -- 1.1 Drivers for 5G -- 1.2 ITU‐R and IMT 2020 Vision -- 1.3 NGMN (Next Generation Mobile Networks) -- 1.4 5GPPP (5G Public‐Private Partnership) -- 1.5 Requirements for Support of Known and New Services -- 1.5.1 Massive IoT -- 1.5.2 Time Critical Communication -- 1.5.3 Enhanced Mobile Broadband (eMBB) -- 1.5.4 Enhanced Vehicular Communications -- 1.5.5 Network Operations -- 1.6 5G Use Cases -- 1.6.1 5G to the Home -- 1.6.2 In‐Vehicle Infotainment -- 1.6.3 Hot Spots -- 1.6.4 Truck Platooning -- 1.6.5 Connected Health Care -- 1.6.6 Industry 4.0 -- 1.6.7 Megacities -- 1.7 Business Models -- 1.7.1 Asset Provider Role -- 1.7.2 Connectivity Provider Role -- 1.7.3 Partner Service Provider Role -- 1.8 Deployment Strategies -- 1.9 3GPP Role and Timelines -- References -- Chapter 2 Wireless Spectrum for 5G -- 2.1 Current Spectrum for Mobile Communication -- 2.2 Spectrum Considerations for 5G -- 2.3 Identified New Spectrum -- 2.4 Spectrum Regulations -- 2.4.1 Licensed Spectrum -- 2.4.2 License‐Exempt Spectrum -- 2.4.3 New Regulatory Approaches -- 2.5 Characteristics of Spectrum Available for 5G -- 2.5.1 Pathloss -- 2.5.2 Multipath Propagation -- 2.6 NR Bands Defined by 3GPP -- References -- Chapter 3 Radio Access Technology -- 3.1 Evolution Toward 5G -- 3.1.1 Introduction -- 3.1.2 Pre‐Standard Solutions -- 3.2 Basic Building Blocks -- 3.2.1 Waveforms for Downlink and Uplink -- 3.2.2 Multiple Access -- 3.2.3 5G Numerology and Frame Structures -- 3.2.4 Bandwidth and Carrier Aggregation -- 3.2.5 Massive MIMO (Massive Multiple Input Multiple Output) -- 3.2.6 Channel Coding; 3.2.6.1 Channel Coding for User Plane Data -- 3.2.6.2 Channel Coding for Physical Control Channels -- 3.3 Downlink Physical Layer -- 3.3.1 Synchronization and Cell Detection -- 3.3.1.1 Primary Synchronization Signal (PSS) -- 3.3.1.2 Secondary Synchronization Signal (SSS) -- 3.3.1.3 Physical Broadcast Channel (PBCH) -- 3.3.1.4 SS Block Burst Set -- 3.3.2 System Information Broadcast (SIB) -- 3.3.2.1 Remaining Minimum System Information (RMSI) -- 3.3.2.2 Other System Information -- 3.3.3 Downlink Data Transmission -- 3.4 Uplink Physical Layer -- 3.4.1 Random Access -- 3.4.1.1 Long Sequence -- 3.4.1.2 Short Sequence -- 3.4.2 Uplink Data Transmission -- 3.4.3 Contention‐Based Access -- 3.5 Radio Protocols -- 3.5.1 Overall Radio Protocol Architecture -- 3.5.2 Medium Access Control (MAC) -- 3.5.2.1 Logical Channels and Transport Channels -- 3.5.2.2 MAC PDU Structures for Efficient Processing -- 3.5.2.3 Procedures to Support UL Scheduling -- 3.5.2.4 Discontinuous Reception and Transmission -- 3.5.2.5 Random Access Procedure -- 3.5.2.6 Beam Failure Management -- 3.5.3 Radio Link Control (RLC) -- 3.5.3.1 Segmentation -- 3.5.3.2 Error Correction Through ARQ -- 3.5.3.3 Reduced RLC Functions for Efficient Processing -- 3.5.4 Packet Data Convergence Protocol (PDCP) -- 3.5.4.1 Reordering -- 3.5.4.2 Security -- 3.5.4.3 Header Compression -- 3.5.4.4 Duplication -- 3.5.5 Service Data Adaptation Protocol (SDAP) -- 3.5.5.1 Mapping of QoS Flows to Data Radio Bearer -- 3.5.5.2 QoS Flow Remapping between Data Radio Bearer -- 3.5.6 Radio Resource Control (RRC) -- 3.6 Mobile Broadband -- 3.6.1 Introduction -- 3.6.2 Indoor Solutions -- 3.6.3 Outdoor‐Urban Areas -- References -- Chapter 4 Next Generation Network Architecture -- 4.1 Drivers and Motivation for a New Architecture -- 4.1.1 New Services Emerging -- 4.1.2 Targets for the New Architecture; 4.1.3 Shortcomings of the Current Architecture -- 4.2 Architecture Requirements and Principles -- 4.2.1 Overview -- 4.2.2 Architecture Domains -- 4.2.3 Flexible Connectivity Models -- 4.2.4 Service Based Architecture -- 4.2.5 Unified Policy Framework -- 4.2.6 Programmable Network -- 4.2.7 Cloud‐Native Network Functions -- 4.2.8 Architectures for Different Spectrum Options -- 4.2.9 RAN Architecture Principles -- 4.2.10 Interworking Principles -- 4.3 5G System Architecture -- 4.3.1 5G System Architecture Reference Model -- 4.3.2 Functional Description -- 4.3.2.1 Access and Mobility Management Function (AMF) -- 4.3.2.2 Session Management Function (SMF) -- 4.3.2.3 Policy Control Function (PCF) -- 4.3.2.4 Unified Data Management (UDM) -- 4.3.2.5 Authentication Server Function (AUSF) -- 4.3.2.6 Unified Data Repository (UDR) -- 4.3.2.7 Unstructured Data Storage Function (UDSF) -- 4.3.2.8 Network Repository Function (NRF) and Network Slice Selection Function (NSSF) -- 4.3.2.9 Network Exposure Function (NEF) -- 4.3.2.10 Security Edge Protection Proxy (SEPP) -- 4.3.2.11 User Plane Function (UPF) -- 4.3.2.12 Application Function (AF) -- 4.4 NG RAN Architecture -- 4.4.1 Principles and Objectives -- 4.4.2 Overall NG‐RAN Architecture -- 4.4.3 Logical NG‐RAN Split -- 4.4.4 Lower‐Layer Split -- 4.4.5 Service‐Aware Function Placement -- 4.4.6 Connectivity to Multiple RAT -- 4.5 Non‐Standalone and Standalone Deployment Options -- 4.5.1 Architecture Options -- 4.5.2 Non‐Standalone Architecture with EPS -- 4.6 Identifiers -- 4.6.1 Overview -- 4.6.2 Subscription Permanent Identifier -- 4.6.3 Subscription Concealed Identifier -- 4.6.4 Temporary Identifier -- 4.7 Network Slicing -- 4.7.1 Introduction and Definition -- 4.7.2 Isolation Properties -- 4.7.3 Slicing Architecture -- 4.7.4 Slice Selection -- 4.7.5 Interworking with EPS (e)DECOR -- 4.8 Multi‐Access Edge Computing; 4.9 Data Storage Architecture -- 4.9.1 Introduction -- 4.9.2 Compute‐Storage Split -- 4.9.3 What is ``Stateless''? How ``Stateless'' is ``Stateless''? -- 4.9.4 AMF Resiliency and State‐Efficient AMF -- 4.10 Network Capability Exposure -- 4.10.1 Introduction -- 4.10.2 Bulk Subscription -- 4.10.3 NEF Capabilities -- 4.11 Interworking and Migration -- 4.11.1 Background -- 4.11.2 Migration from EPS Toward 5GS -- 4.11.3 System Level Interworking with EPS -- 4.11.3.1 Understanding Terminology -- 4.11.4 Interworking Between EPC and 5GC Using N26 -- 4.11.5 Interworking Between EPC and 5GC without N26 -- 4.12 Non‐3GPP Access -- 4.12.1 Introduction -- 4.12.2 Interworking with EPC in Case of Non‐3GPP Access -- 4.12.3 Multi‐Access PDU Sessions -- 4.13 Fixed Mobile Convergence -- 4.14 Network Function Service Framework -- 4.14.1 Principles of a Service Framework -- 4.14.2 What is an NF Service? -- 4.14.3 Consumer/Producer Interactions -- 4.14.4 Network Function Service Authorization -- 4.14.5 Network Function Registration and De‐registration -- 4.14.6 Network Function Discovery -- 4.14.7 Network Function Services -- 4.14.7.1 AMF Services -- 4.14.7.2 SMF Services -- 4.14.7.3 UDM Services -- 4.14.7.4 NRF Services -- 4.15 IMS Services -- 4.15.1 Overview -- 4.15.2 Support for System/EPS Fallback for Voice -- 4.15.3 Support for RAT/E‐UTRA Fallback for Voice -- 4.16 Emergency Services -- 4.16.1 Overview -- 4.16.2 Support for Emergency Services Fallback -- 4.17 Location Services -- 4.18 Short Message Service -- 4.18.1 Overview -- 4.18.2 SMS over NAS -- 4.19 Public Warning System -- 4.20 Protocol Stacks -- 4.20.1 Control Plane Protocol Stacks -- 4.20.1.1 Control Plane Protocol Stacks Between the 5G‐AN and the 5G Core -- 4.20.1.2 Control Plane Protocol Stacks Between the UE and the 5GC -- 4.20.1.3 Control Plane Protocol Stacks Between the Network Functions in 5GC; 4.20.1.4 Control Plane Protocol Stack for the N4 Interface Between SMF and UPF -- 4.20.1.5 Control Plane Protocol Stack for Untrusted Non‐3GPP Access -- 4.20.2 User Plane Protocol Stacks -- 4.21 Charging -- 4.22 Summary and Outlook of 5G System Features -- 4.23 Terminology and Definitions -- 4.23.1 NG‐Radio Access Network (NG‐RAN) -- 4.23.2 5G‐Access Network (5G‐AN) -- 4.23.3 5G Core (5GC) -- 4.23.4 5G System (5GS) -- 4.23.5 Access Stratum (AS) and Non‐Access Stratum (NAS) -- References -- Chapter 5 Access Control and Mobility Management -- 5.1 General Principles -- 5.1.1 Mobility Management Objectives -- 5.1.2 Mobility Requirements for the 5G System -- 5.1.3 Mobility Support in the 5G System -- 5.2 Mobility States and Functionalities -- 5.2.1 NAS State Machine and State Transitions -- 5.2.2 RRC State Machine and State Transitions -- 5.2.3 Inter‐RAT Operation of RRC States -- 5.2.4 Benefits of the New RRC State Model -- 5.3 Initial Access and Registration -- 5.4 Connected Mode Mobility -- 5.4.1 NSA Mobility Scenarios -- 5.4.1.1 Intra SN Mobility in a Cloud RAN Deployment -- 5.4.1.2 Change of Secondary Node (MN and SN Initiated) -- 5.4.1.3 Inter‐Master Node Handover without Secondary Node Change -- 5.4.1.4 Master Node to eNB/gNB Change -- 5.4.2 Standalone (SA) Mobility Scenarios -- 5.4.2.1 Xn Based Handover -- 5.4.2.2 N2 Based Handover -- 5.4.3 Conditional Handover -- 5.5 Idle Mode mobility and UE Reachability -- 5.5.1 Overview -- 5.5.2 Mobility Registration and Periodic Registration -- 5.5.3 Network Initiated Paging -- 5.6 RRC Inactive State mobility and UE Reachability -- 5.6.1 Overview -- 5.6.2 Cell Selection and Reselection -- 5.6.3 Paging and Notification from RAN -- 5.6.4 RAN Notification Area -- 5.6.5 RRC Inactivation -- 5.6.6 RRC Activation -- 5.7 Beam Level Mobility -- 5.7.1 Overview -- 5.7.2 Beam Management; 5.7.3 Beam Level and Cell Level Mobility UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5703975 ER -