TY - BOOK AU - Laird,John E. AU - III,Robert E.Wray AU - Wang,Yongjia AU - Derbinsky,Nate AU - Nuxoll,Andrew M. AU - Lathrop,Scott AU - Wintermute,Samuel AU - III,Robert P.Marinier AU - Gorski,Nicholas AU - Xu,Joseph TI - The Soar Cognitive Architecture T2 - The MIT Press Series SN - 9780262301145 AV - Q335 -- .L329 2012eb U1 - 006.3 PY - 2012/// CY - Cambridge PB - MIT Press KW - Software architecture KW - Electronic books N1 - Intro -- Contents -- Preface -- Acknowledgments -- Chapter 1. Introduction -- 1.1 Background -- 1.2 Cognitive Architectures -- 1.3 Soar -- 1.4 Research Strategy -- 1.5 Preview of Chapters 2-14 -- Chapter 2. Requirements for Cognitive Architectures -- 2.1 Characteristics of Environments, Tasks, and Agents -- 2.2 Architectural Requirements -- Chapter 3. The Problem-Space Computational Model -- 3.1 Task Environments -- 3.2 The Problem-Space Framework -- 3.3 Knowledge Search -- 3.4 Problem-Space Computational Models -- 3.5 Impasses and Substates -- 3.6 Using Multiple Sources of Knowledge -- 3.7 Acquiring Knowledge -- 3.8 Alternative PSCMs -- Chapter 4. Soar as an Implementation of the PSCM -- 4.1 Production Systems -- 4.2 Mapping Production Systems onto the PSCM -- 4.3 The Soar Processing Cycle -- 4.4 Demonstrations of Basic PSCM -- 4.5 Discussion -- 4.6 Analysis of Requirements -- Chapter 5. Impasses and Substates: The Basis for Complex Reasoning -- 5.1 Impasses -- 5.2 Substates -- 5.3 Problem Solving in Substates -- 5.4 Substate Results -- 5.5 Maintaining Consistency -- 5.6 Demonstrations of Impasses and Substates -- 5.7 Discussion -- 5.8 Analysis of Requirements -- Chapter 6. Chunking -- 6.1 Chunking in Soar -- 6.2 Implications of Chunking in Soar -- 6.3 Demonstrations of Chunking -- 6.4 Assumptions Inherent to Chunking -- Chapter 7. Tuning Procedural Knowledge: Reinforcement Learning -- 7.1 Reinforcement Learning in Soar -- 7.2 Learning over Large State Spaces -- 7.3 Demonstrations of Reinforcement Learning -- 7.4 Analysis of Requirements -- Chapter 8. Semantic Memory -- 8.1 Semantic Memory in Soar -- 8.2 Encoding and Storage -- 8.3 Retrieval -- 8.4 Demonstrations of Semantic Memory -- 8.5 Analysis of Requirements -- Chapter 9. Episodic Memory -- 9.1 Episodic Memory in Soar -- 9.2 Encoding and Storage -- 9.3 Retrieval; 9.4 Use of Episodic Memory -- 9.5 Demonstrations of Episodic Memory -- 9.6 Comparison of Episodic Memory and Semantic Memory -- 9.7 Analysis of Requirements -- Chapter 10. Visuospatial Processing with Mental Imagery -- 10.1 Visual and Spatial Representations -- 10.2 Visuospatial Domains -- 10.3 SVS -- 10.4 Demonstrations of Spatial and Visual Imagery -- 10.5 Analysis of Requirements -- Chapter 11. Emotion -- 11.1 Appraisal Theories of Emotion -- 11.2 Abstract Functional Cognitive Operations -- 11.3 Unifying Cognitive Control and Appraisal -- 11.4 Emotion, Mood, and Feeling -- 11.5 Emotion and Reinforcement Learning -- 11.6 Demonstrations of Emotion Processing -- 11.7 Analysis of Requirements -- Chapter 12. Demonstrations of Multiple Architectural Capabilities -- 12.1 Learning to Use Episodic Memory with Reinforcement Learning -- 12.2 Using Mental Imagery with Reinforcement Learning -- 12.3 Diverse Forms of Action Modeling -- 12.4 Analysis of Requirements -- Chapter 13. Soar Applications -- 13.1 Applications -- 13.2 TacAir-Soar -- 13.3 Imagining TacAir-Soar 2.0 -- Chapter 14. Conclusion -- 14.1 Soar from a Structural Perspective -- 14.2 Soar from a Functional Perspective -- 14.3 Evaluating Soar on Architectural Requirements -- References -- Index N2 - The definitive presentation of Soar, one AI's most enduring architectures, offering comprehensive descriptions of fundamental aspects and new components UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3339436 ER -