Baldi, Pierre.

Bioinformatics : The Machine Learning Approach. - 2nd ed. - 1 online resource (477 pages) - Adaptive Computation and Machine Learning Series . - Adaptive Computation and Machine Learning Series .

Intro -- Contents -- Series Foreword -- Preface -- 1 Introduction -- 2 Machine-Learning Foundations: The Probabilistic Framework -- 3 Probabilistic Modeling and Inference: Examples -- 4 Machine Learning Algorithms -- 5 Neural Networks: The Theory -- 6 Neural Networks: Applications -- 7 Hidden Markov Models: The Theory -- 8 Hidden Markov Models: Applications -- 9 Probabilistic Graphical Models in Bioinformatics -- 10 Probabilistic Models of Evolution: Phylogenetic Trees -- 11 Stochastic Grammars and Linguistics -- 12 Microarrays and Gene Expression -- 13 Internet Resources and Public Databases -- A Statistics -- B Information Theory, Entropy, and Relative Entropy -- C Probabilistic Graphical Models -- D HMM Technicalities, Scaling, Periodic Architectures, State Functions, and Dirichlet Mixtures -- E Gaussian Processes, Kernel Methods, and Support Vector Machines -- F Symbols and Abbreviations -- References -- Index.

A guide to machine learning approaches and their application to the analysis of biological data.

9780262255707


Bioinformatics.
Molecular biology -- Computer simulation.
Molecular biology -- Mathematical models.
Neural networks (Computer science).
Machine learning.
Markov processes.


Electronic books.

QH506.B35 2001

572.8/01/13