TY - BOOK AU - Alazard,T. AU - Burq,N. AU - Zuily,C. TI - Strichartz Estimates and the Cauchy Problem for the Gravity Water Waves Equations T2 - Memoirs of the American Mathematical Society Series SN - 9781470449216 AV - QA927 .A439 2018 U1 - 532.593 PY - 2019/// CY - Providence PB - American Mathematical Society KW - Water waves-Mathematical models KW - Waves-Mathematical models KW - Streamflow velocity-Mathematical models KW - Inequalities (Mathematics) KW - Electronic books N1 - Cover -- Title page -- Chapter 1. Introduction -- 1.1. Equations and assumptions on the fluid domain -- 1.2. Regularity thresholds for the water waves -- 1.3. Reformulation of the equations -- 1.4. Main result -- 1.5. Paradifferential reduction -- 1.6. Strichartz estimates -- Chapter 2. Strichartz estimates -- 2.1. Symmetrization of the equations -- 2.2. Smoothing the paradifferential symbol -- 2.3. The pseudo-differential symbol -- 2.4. Several reductions -- 2.5. Straightening the vector field -- 2.6. Reduction to a semi-classical form -- 2.7. The parametrix -- 2.8. The dispersion estimate -- 2.9. The Strichartz estimates -- Chapter 3. Cauchy problem -- 3.1. A priori estimates -- 3.2. Contraction estimates -- 3.3. Passing to the limit in the equations -- 3.4. Existence and uniqueness -- Appendix A. Paradifferential calculus -- A.1. Notations and classical results -- A.2. Symbolic calculus -- A.3. Paraproducts and product rules -- Appendix B. Tame estimates for the Dirichlet-Neumann operator -- B.1. Scheme of the analysis -- B.2. Parabolic evolution equation -- B.3. Paralinearization -- Appendix C. Estimates for the Taylor coefficient -- Appendix D. Sobolev estimates -- D.1. Introduction -- D.2. Symmetrization of the equations -- D.3. Sobolev estimates -- Appendix E. Proof of a technical result -- Bibliography -- Back Cover N2 - This memoir is devoted to the proof of a well-posedness result for the gravity water waves equations, in arbitrary dimension and in fluid domains with general bottoms, when the initial velocity field is not necessarily Lipschitz. Moreover, for two-dimensional waves, the authors consider solutions such that the curvature of the initial free surface does not belong to L^2. The proof is entirely based on the Eulerian formulation of the water waves equations, using microlocal analysis to obtain sharp Sobolev and Hölder estimates. The authors first prove tame estimates in Sobolev spaces depending linearly on Hölder norms and then use the dispersive properties of the water-waves system, namely Strichartz estimates, to control these Hölder norms UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5633667 ER -