Photoelectrochemical Solar Cells.
- 1st ed.
- 1 online resource (482 pages)
- Advances in Solar Cell Materials and Storage (ASCMS) Series .
- Advances in Solar Cell Materials and Storage (ASCMS) Series .
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: General Concepts and Photoelectrochemical Systems -- 1 Photoelectrochemical Reaction Engineering for Solar Fuels Production -- 1.1 Introduction -- 1.1.1 Undeveloped Power of Renewables -- 1.1.2 Comparison Solar Hydrogen from Different Sources -- 1.1.3 Economic Targets for Hydrogen Production and PEC Systems -- 1.1.4 Goals of Using Hydrogen -- 1.2 Theory and Classification of PEC Systems -- 1.2.1 Classification Framework for PEC Cell Conceptual Design -- 1.2.2 Classification Framework for Design of PEC Devices -- 1.2.3 Integrated Device vs PV + Electrolysis -- 1.3 Scaling Up of PEC Reactors -- 1.4 Reactor Designs -- 1.5 System-Level Design -- 1.6 Outlook -- 1.6.1 Future Reactor Designs -- 1.6.1.1 Perforated Designs -- 1.6.1.2 Membrane-Less and Microfluidic Designs -- 1.6.1.3 Redox-Mediated Systems -- 1.6.2 Avenues for Future Research -- 1.6.2.1 Intensification and Waste Heat Utilization -- 1.6.2.2 Usefulness of Oxidation and Coupled Process with Hydrogen Generation -- 1.7 Summary and Conclusions -- References -- 2 The Measurements and Efficiency Definition Protocols in Photoelectrochemical Solar Hydrogen Generation -- 2.1 Introduction -- 2.2 PEC Measurement -- 2.2.1 Measurements of Optical Properties -- 2.2.2 Polarization Curve Measurements -- 2.2.3 Photocurrent Transients Measurements -- 2.2.4 IPCE and APCE Measurements -- 2.2.5 Mott-Schottky Measurements -- 2.2.6 Measurement (Calculation) of Charge Separation Efficiency -- 2.2.7 Measurements of Charge Injection Efficiency -- 2.2.8 Gas Evolution Measurements -- 2.3 The Efficiency Definition Protocols in PEC Water Splitting -- 2.3.1 Solar-to-Hydrogen Conversion Efficiency -- 2.3.2 Applied Bias Photon-to-Current Efficiency -- 2.3.3 IPCE and APCE -- 2.4 Summary -- References. 3 Photoelectrochemical Cell: A Versatile Device for Sustainable Hydrogen Production -- 3.1 Introduction -- 3.2 Photoelctrochemical (PEC) Cells -- 3.2.1 Solar-to-Hydrogen (STH) Conversion Efficiency -- 3.2.2 Applied Bias Photon-to-Current Efficiency (ABPE) -- 3.2.3 External Quantum Efficiency (EQE) or Incident Photon-to-Current Efficiency (IPCE) -- 3.2.4 Internal Quantum Efficiency (IQE) or a Absorbed Photon-to-Current Efficiency (APCE) -- 3.3 Monometal Oxide Systems for PEC H2 Generation -- 3.3.1 Titanium Dioxide (TiO2) -- 3.3.2 Zinc Oxide (ZnO) -- 3.3.3 Tungsten Oxide (WO3) -- 3.3.4 Iron Oxide (Fe2O3) -- 3.3.5 Bismuth Vandate (BiVO4) -- 3.4 Complex Nanostructures for PEC Splitting of Water -- 3.4.1 Plasmonic Metal Semiconductor Composite Photoelectrodes -- 3.4.2 Semiconductor Heterojunctions -- 3.4.3 Quantum Dots Sensitized Semiconductor Photoelectrodes -- 3.4.4 Synergistic Effect in Semiconductor Photoelectrodes -- 3.4.5 Biosensitized Semiconductor Photoelectrodes -- 3.4.6 Tandem Stand-Alone PEC Water-Splitting Device -- 3.5 Conclusion and Outlook -- Acknowledgments -- References -- 4 Hydrogen Generation from Photoelectrochemical Water Splitting -- 4.1 Introduction -- 4.2 Principle of Photoelectrochemical (PEC) Hydrogen Generation -- 4.3 Photoeletrode Materials -- 4.3.1 Photoanode Materials -- 4.3.1.1 TiO2-Based Photoelectrode -- 4.3.1.2 BiVO4-Based Photoelectrode -- 4.3.1.3 α-Fe2O3-Based Photoelectrode -- 4.3.2 Photocathode Materials -- 4.3.2.1 Copper-Based Chalcogenides-Based Photoelectrode -- 4.3.2.2 Silicon-Based Photoelectrode -- 4.3.2.3 Cu2O-Based Photoelectrode -- 4.3.2.4 III-V Group Materials -- 4.3.2.5 CdS-Based Photoelectrode -- 4.4 Advances in Photoelectrochemical (PEC) Hydrogen Generation -- 4.4.1 Monocomponent Catalyst -- 4.4.2 Functional Cocatalyst -- 4.4.3 Z-Scheme Catalyst -- 4.5 Pros and cons of photoelectrodes and photocatalysts. 4.6 Conclusion and Outlook -- Acknowledgments -- References -- Part II: Photoactive Materials for Solar Hydrogen Generation -- 5 Hematite Materials for Solar-Driven Photoelectrochemical Cells -- 5.1 Introduction -- 5.2 Physical Properties of Hematite -- 5.2.1 Crystal Structure -- 5.2.2 Optical Properties -- 5.2.3 Electronic Properties -- 5.2.4 Band Structure -- 5.2.5 Overview of Hematite Bottlenecks and Corresponding Strategies -- 5.2.5.1 Addressing Poor Light Absorption Efficiency -- 5.2.5.2 Addressing Fast Charge Carrier Recombination -- 5.2.5.3 Addressing Sluggish Water Oxidation Kinetics -- 5.3 Experimental Strategies to Enhance the Photoactivity of Hematite -- 5.3.1 Nanostructuring -- 5.3.1.1 Direct Synthesis -- 5.3.1.2 In Situ Structural Transformation -- 5.3.1.3 "Locking" Nanostructures -- 5.3.2 Doping -- 5.3.2.1 Oxygen Vacancies -- 5.3.2.2 Foreign Ion Doping -- 5.3.3 Construction of Heterojunctions -- 5.3.3.1 Semiconducting Overlayers -- 5.3.3.2 Sensitization and Tandem Cells -- 5.3.3.3 OER Catalysts -- 5.3.3.4 Engineering of Current Collectors -- 5.4 Fundamental Characteristics of the PEC Behaviors of Hematite -- 5.4.1 Transient Absorption Spectroscopy -- 5.4.2 Effects of Morphology -- 5.4.3 Effect of Doping -- 5.4.3.1 Oxygen (O) Vacancies -- 5.4.3.2 n-type Dopants -- 5.4.3.3 p-type Dopants -- 5.4.3.4 Isovalent Dopants -- 5.4.3.5 Multiple Dopants -- 5.4.4 Effect of Water Oxidation Catalysts -- 5.4.4.1 Mechanism of Uncatalyzed Water Oxidation -- 5.4.4.2 Mechanism of Catalyzed Water Oxidation -- 5.4.5 Effect of Heterojunctions -- 5.4.5.1 Facilitating Charge Separation and Transfer -- 5.4.5.2 Surface Passivation -- 5.4.5.3 Back-Contact Engineering -- 5.5 Summary -- References -- 6 Design of Bismuth Vanadate-Based Materials: New Advanced Photoanodes for Solar Hydrogen Generation -- 6.1 Introduction. 6.2 Photoanodes in Photoelectrochemical Processes -- 6.3 Bismuth Vanadate (BiVO4) -- 6.3.1 Structure and Properties of BiVO4 -- 6.3.2 Synthesis of BiVO4 -- 6.3.3 Applications of BiVO4 Materials -- 6.4 BiVO4 as Photoanode for Solar Hydrogen Generation -- 6.4.1 Optimization of the Photoanode -- 6.4.1.1 Photoanode Preparation -- 6.4.1.2 Choice of the Electrolyte -- 6.4.2 Solar Hydrogen Generation by Water Splitting -- 6.5 Modified BiVO4 Photoanodes -- 6.5.1 Transition Metal-Modified BiVO4 -- 6.5.1.1 Generalities -- 6.5.1.2 Nb-modified BiVO4 -- 6.5.2 BiVO4 Composites -- 6.5.2.1 Generalities -- 6.5.2.2 BiVO4/TiO2 Composite -- 6.6 Conclusion -- 6.7 Acknowledgments -- References -- 7 Copper-Based Chalcopyrite and Kesterite Materials for Solar Hydrogen Generation -- 7.1 Introduction -- 7.2 Chalcopyrite I-III-VI2 Semiconductors -- 7.2.1 Material Properties -- 7.2.2 Synthesis Techniques of Chalcopyrite CuInS/Se2 Nanocrystals -- 7.2.2.1 Hot-Injection Method -- 7.2.2.2 Heat-Up (Noninjection) Method -- 7.2.2.3 Thermal Decomposition Method -- 7.2.2.4 Solvothermal Method -- 7.2.2.5 Microwave Treatment Method -- 7.2.3 Chalcopyrite CuInS/Se2 Thin-Film Fabrication Methods -- 7.2.3.1 Vacuum-Based Techniques -- 7.2.3.2 Nonvacuum Techniques -- 7.2.4 Applications in Photoelectrochemical Cells -- 7.3 Cu-Based Kesterite (I2-II-IV-VI4) Semiconductors -- 7.3.1 Material Properties -- 7.3.2 Synthesis Techniques of Kesterite Cu2ZnSnS/Se4 Nanocrystals -- 7.3.2.1 Hot-Injection Method -- 7.3.2.2 Solvothermal/Hydrothermal Method -- 7.3.2.3 Microwave-Assisted Chemical Synthesis -- 7.3.2.4 Additional Novel Approaches to CZTS Nanocrystal Syntheses -- 7.3.3 Kesterite Cu2ZnSnS4 Thin-Film Fabrication Methods -- 7.3.3.1 Vacuum-Based Techniques -- 7.3.3.2 Nonvacuum Techniques -- 7.3.4 Applications in Photoelectrochemical Cells -- 7.4 Concluding Remarks -- References. 8 Eutectic Composites for Photoelectrochemical Solar Cells (PSCs) -- 8.1 Introduction -- 8.2 The Photoelectrolysis of Water as a Source of Hydrogen -- 8.3 Experimental Methods for Studying Photoactive Materials Such as Electrochemical (Mott-Schottky Plots) and Photoelectrochemical Determination of the Flat-Band Potential, Impedance Spectroscopy, and Bandgap by Optical Spectroscopy -- 8.4 Eutectic Composites -- 8.5 Methods of Obtaining Eutectic Composites -- 8.6 Eutectic Composites used for Photoelectrochemical Water Splitting -- 8.7 Other Potential Eutectic Composites -- 8.8 Modification of the Properties of Eutectic Composites -- 8.9 Conclusions -- References -- Part III: Photoelectrochemical Related Systems -- 9 Implementation of Multijunction Solar Cells in Integrated Devices for the Generation of Solar Fuels -- 9.1 Introduction -- 9.2 Multijunction Solar Cells as Photoelectrodes -- 9.3 PV-EC Devices Based on Multijunction Solar Cells -- 9.4 Promising Device Designs, Future Prospects -- 9.5 Summary and Conclusions -- References -- 10 Photoelectrochemical Cells: Dye-Sensitized Solar Cells -- 10.1 Introduction -- 10.2 Brief History of Solar Cells to DSSCs -- 10.3 Structure, Components, and Working Principle of the DSSC -- 10.3.1 The Transparent Conducting Oxide (TCO) Substrate -- 10.3.2 The Hole Blocking Layer (HBL) -- 10.3.3 The Photoanode -- 10.3.4 The Sensitizer/Dye -- 10.3.5 The HTM/Electrolyte -- 10.3.6 The CE -- 10.3.7 Electron Kinetics in an Active DSSC -- 10.4 Characterization Techniques for DSSCs -- 10.4.1 Computational Modeling -- 10.4.2 Morphological and Structural Studies -- 10.4.2.1 Electron Microscopy -- 10.4.2.2 X-Ray Diffraction -- 10.4.3 Dye Adsorption. -- 10.4.4 Spectroscopic Techniques -- 10.4.4.1 Optical (UV-Vis) Spectroscopy -- 10.4.4.2 X-Ray Photoelectron Spectroscopy -- 10.4.4.3 FTIR Spectroscopy -- 10.4.4.4 Raman Spectroscopy. 10.4.4.5 Material Composition.