McCord, Christopher K.

Integral Manifolds of the Three Body Problem. - 1st ed. - 1 online resource (106 pages) - Memoirs of the American Mathematical Society ; v.132 . - Memoirs of the American Mathematical Society .

Intro -- Contents -- Chapter 1. Introduction -- 1. The integrals and manifolds -- 2. History of the problem -- 3. Summary of results -- Chapter 2. The Decomposition of the Spaces -- 1. The spaces and maps -- 2. The geometry of the sets -- Chapter 3. The Cohomology -- 1. The cohomology of k[sub(R)](c,h) -- 2. The cohomology of k(c,h) -- 3. The homeomorphism type of h(c,h) and h[sub(R)](c,h) -- 4. The cohomology of m[sub(R)](c,h) -- 5. The cohomology of m(c,h) -- Chapter 4. The analysis of k(c,h) for equal masses -- 1. y[sub(1)][sup(2)] + y[sub(2)][sup(2)] as function of σ,τ for equal masses -- 2. The semi-minor axis of the ellipse for equal masses -- 3. The graphs of Z = f(X) and Z = g(X) for equal masses -- 4. The semi- major axis of the ellipse for equal masses -- 5. The feasible region c(c, h) -- 6. k[sub(R)](c,h) for equal masses -- 7. Orientation in k(c,h) -- 8. Positive energy -- Chapter 5. The analysis of k(c,h) for general masses -- 1. y[sub(1)][sup(2)] + y[sub(2)][sup(2)] as function of σ,τ for general masses -- 2. The semi-minor axis of the ellipse -- 3. The graph of Z = f(X) and Z = g(X) for general masses -- 4. The semi-major axis of the ellipse for unequal masses -- 5. k[sub(R)](c,h) for unequal masses -- Bibliography.

9781470402174


Three-body problem.
Celestial mechanics.
Manifolds (Mathematics).


Electronic books.

QB362.T5 -- M33 1998eb

521