TY - BOOK AU - Duits,Maurice AU - Kuijlaars,Arno B.J. AU - Mo,Man Yue TI - Hermitian Two Matrix Model with an Even Quartic Potential T2 - Memoirs of the American Mathematical Society SN - 9780821887561 AV - QA379 -- .D858 2011eb U1 - 512.7/4 PY - 2012/// CY - Providence PB - American Mathematical Society KW - Boundary value problems KW - Hermitian structures KW - Eigenvalues KW - Random matrices KW - Electronic books N1 - Intro -- Contents -- Abstract -- Chapter 1. Introduction and Statement of Results -- 1.1. Hermitian two matrix model -- 1.2. Background -- 1.3. Vector equilibrium problem -- 1.4. Solution of vector equilibrium problem -- 1.5. Classification into cases -- 1.6. Limiting mean eigenvalue distribution -- 1.7. About the proof of Theorem 1.4 -- 1.8. Singular cases -- Chapter 2. Preliminaries and the Proof of Lemma 1.2 -- 2.1. Saddle point equation and functions sj -- 2.2. Values at the saddles and functions j -- 2.3. Large z asymptotics -- 2.4. Two special integrals -- 2.5. Proof of Lemma 1.2 -- Chapter 3. Proof of Theorem 1.1 -- 3.1. Results from potential theory -- 3.2. Equilibrium problem for 3 -- 3.3. Equilibrium problem for 1 -- 3.4. Equilibrium problem for 2 -- 3.5. Uniqueness of the minimizer -- 3.6. Existence of the minimizer -- 3.7. Proof of Theorem 1.1 -- Chapter 4. A Riemann Surface -- 4.1. The g-functions -- 4.2. Riemann surface R and -functions -- 4.3. Properties of the functions -- 4.4. The functions -- Chapter 5. Pearcey Integrals and the First Transformation -- 5.1. Definitions -- 5.2. Large z asymptotics -- 5.3. First transformation: Y X -- 5.4. RH problem for X -- Chapter 6. Second Transformation X U -- 6.1. Definition of second transformation -- 6.2. Asymptotic behavior of U -- 6.3. Jump matrices for U -- 6.4. RH problem for U -- Chapter 7. Opening of Lenses -- 7.1. Third transformation U T -- 7.2. RH problem for T -- 7.3. Jump matrices for T -- 7.4. Fourth transformation T S -- 7.5. RH problem for S -- 7.6. Behavior of jumps as n -- Chapter 8. Global Parametrix -- 8.1. Statement of RH problem -- 8.2. Riemann surface as an M-curve -- 8.3. Canonical homology basis -- 8.4. Meromorphic differentials -- 8.5. Definition and properties of functions uj -- 8.6. Definition and properties of functions vj -- 8.7. The first row of M; 8.8. The other rows of M -- Chapter 9. Local Parametrices and Final Transformation -- 9.1. Local parametrices -- 9.2. Final transformation -- 9.3. Proof of Theorem 1.4 -- Bibliography -- Index UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114563 ER -