TY - BOOK AU - Nyman,Adam TI - Points on Quantum Projectivizations T2 - Memoirs of the American Mathematical Society SN - 9781470403935 AV - QA564 -- .N96 2004eb U1 - 510 s;516.3/5 PY - 2003/// CY - Providence PB - American Mathematical Society KW - Geometry, Algebraic KW - Noncommutative algebras KW - Categories (Mathematics) KW - Electronic books N1 - Intro -- Contents -- Chapter 1. Introduction -- 1.1. Geometric invariants in the absolute case -- 1.2. Bimodules and algebras -- 1.3. Geometric invariants in the relative case -- 1.4. Organization of the paper -- 1.5. Advice to the reader -- 1.6. Notation and conventions -- Chapter 2. Compatibilities on Squares -- 2.1. 2-Categories -- 2.2. The category of squares -- 2.3. Indexed categories -- 2.4. Squares of indexed categories -- Chapter 3. Construction of the Functor Γ[sub(n)] -- 3.1. Bimodules -- 3.2. Bimodule algebras -- 3.3. Lifting structures -- 3.4. The definition of Γ[sub(n)] -- Chapter 4. Compatibility with Descent -- 4.1. Local determination of a functor by a subfunctor -- 4.2. An algebraic description of maps into projectivizations -- 4.3. Free morphisms and free families -- 4.4. The proof that Γ[sub(n)] is compatible with descent -- Chapter 5. The Representation of Γ[sub(n)] for Low n -- 5.1. The representation of Γ[sub(0)] -- 5.2. The representation of Γ[sub(n)] for 0 < -- n < -- m -- Chapter 6. The Bimodule Segre Embedding -- 6.1. Statement of the main theorem -- 6.2. Construction of the bimodule Segre embedding -- 6.3. s is functorial -- 6.4. s is compatible with base change -- 6.5. s is associative -- Chapter 7. The Representation of Γ[sub(n)] for High n -- Bibliography -- Index UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114544 ER -