Spectral Means of Central Values of Automorphic
- 1st ed.
- 1 online resource (144 pages)
- Memoirs of the American Mathematical Society ; v.235 .
- Memoirs of the American Mathematical Society .
Cover -- Title page -- Chapter 1. Introduction -- Chapter 2. Preliminaries -- Chapter 3. Preliminary analysis -- Chapter 4. Green's functions on (2,ℝ) -- Chapter 5. Green's functions on (2, ᵥ) with a non archimedean place -- Chapter 6. Kernel functions -- Chapter 7. Regularized periods -- Chapter 8. Automorphic Green's functions -- Chapter 9. Automorphic smoothed kernels -- Chapter 10. Periods of regularized automorphic smoothed kernels: the spectral side -- Chapter 11. A geometric expression of automorphic smoothed kernels -- Chapter 12. Periods of regularized automorphic smoothed kernels: the geometric side -- Chapter 13. Asymptotic formulas -- Chapter 14. An error term estimate in the Weyl type asymptotic law -- Chapter 15. Appendix -- Bibliography -- Back Cover.
Starting with Green's functions on adele points of \mathrm(2) considered over a totally real number field, the author elaborates an explicit version of the relative trace formula, whose spectral side encodes the informaton on period integrals of cuspidal waveforms along a maximal split torus. As an application, he proves two kinds of asymptotic mean formula for certain central L-values attached to cuspidal waveforms with square-free level.