Invariant Representations of mathrm(2) under Tensor Product with a Quadratic Character.
- 1st ed.
- 1 online resource (185 pages)
- Memoirs of the American Mathematical Society ; v.204 .
- Memoirs of the American Mathematical Society .
Intro -- Contents -- Abstract -- Chapter 1. Introduction -- 1.1. An Overview -- 1.2. -Invariant Automorphic Representations -- 1.3. Local Character Identities -- 1.4. Statement of Main Results -- 1.5. Acknowledgments -- Chapter 2. -Endoscopy for GSp(2) -- 2.1. Endoscopic Data -- 2.2. Endoscopic group H1 -- 2.3. Endoscopic group H2 -- 2.4. Norm Correspondence -- 2.5. Matching Functions -- Chapter 3. The Trace Formula -- 3.1. The Fine -Expansion -- 3.2. Comparison of the Geometric Sides of Trace Formulas -- 3.3. Application of the Kottwitz-Shelstad Formula -- Chapter 4. Global Lifting -- 4.1. The -Trace Identity -- 4.2. Frobenius-Hecke Classes -- 4.3. Packets -- 4.4. Contributions -- 4.5. Some Global Lifting Results -- 4.6. Final Words -- Chapter 5. The Local Picture -- 5.1. Parabolically Induced Representations -- 5.2. Parabolically Induced Representations---Split Case -- 5.3. Character Identities for Unstable Packets -- 5.4. Character Identities for Stable Packets -- Appendix A. Summary of Global Lifting -- A.1. Unstable (quasi-)packets of G -- A.2. Stable (quasi-)packets -- A.3. Induced representations -- Appendix B. Fundamental Lemma -- B.1. Norm Correspondence---Elliptic Elements -- B.2. Comparison of Orbital Integrals -- Bibliography -- List of Symbols -- Index.
9781470405717
Automorphisms. Spectral theory (Mathematics). Tensor products. p-adic analysis.