TY - BOOK AU - Mohammed,Salah-Eldin A. AU - Zhang,Tusheng AU - Zhao,Huaizhong TI - Stable Manifold Theorem for Semilinear Stochastic Evolution Equations and Stochastic Partial Differential Equations T2 - Memoirs of the American Mathematical Society SN - 9781470405236 AV - QA274.25 -- .M64 2008eb U1 - 519.2 PY - 2008/// CY - Providence PB - American Mathematical Society KW - Stochastic partial differential equations KW - Stochastic integral equations KW - Manifolds (Mathematics) KW - Evolution equations KW - Electronic books N1 - Intro -- Contents -- Introduction -- Part 1. The stochastic semiflow -- 1.1 Basic concepts -- 1.2 Flows and cocycles of semilinear see's -- (a) Linear see's -- (b) Semilinear see's -- 1.3 Semilinear spde's: Lipschitz nonlinearity -- 1.4 Semilinear spde's: Non- Lipschitz nonlinearity -- (a) Stochastic reaction diffusion equations -- (b) Burgers equation with additive noise -- Part 2. Existence of stable and unstable manifolds -- 2.1 Hyperbolicity of a stationary trajectory -- 2.2 The nonlinear ergodic theorem -- 2.3 Proof of the local stable manifold theorem -- 2.4 The local stable manifold theorem for see's and spde's -- (a) See's: Additive noise -- (b) Semilinear see's: Linear noise -- (c) Semilinear parabolic spde's: Lipschitz nonlinearity -- (d) Stochastic reaction diffusion equations: Dissipative nonlinearity -- (e) Stochastic Burgers equation: Additive noise -- Acknowledgments -- Bibliography UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114099 ER -