TY - BOOK AU - de Acosta,Alejandro D. AU - Ney,Peter TI - Large Deviations for Additive Functionals of Markov Chains T2 - Memoirs of the American Mathematical Society SN - 9781470414825 AV - QA273.67 -- .A26 2013eb U1 - 519.233 PY - 2014/// CY - Providence PB - American Mathematical Society KW - Large deviations KW - Markov processes KW - Additive functions KW - Electronic books N1 - Intro -- Contents -- Chapter 1. Introduction -- Chapter 2. The transform kernels _{ } and their convergence parameters -- 2.1. Irreducibility -- 2.2. Small functions and measures -- 2.3. The convergence parameter -- 2.4. The period of _{ } and aperiodicity -- Chapter 3. Comparison of Λ( ) and _{ }( ) -- Chapter 4. Proof of Theorem 1 -- Chapter 5. A characteristic equation and the analyticity of Λ_{ }: the case when has an atom ∈ ⁺ satisfying *( )> -- 0 -- Chapter 6. Characteristic equations and the analyticity of Λ_{ }: the general case when is geometrically ergodic -- Chapter 7. Differentiation formulas for _{ } and Λ_{ } in the general case and their consequences -- Chapter 8. Proof of Theorem 2 -- Chapter 9. Proof of Theorem 3 -- Chapter 10. Examples -- Chapter 11. Applications to an autoregressive process and to reflected random walk -- 11.1. Application of Theorem 1 to an autoregressive process -- 11.2. Application of Theorem 2 to reflected random walk -- Appendix -- AI. Renewal sequences -- AII. Complex kernels and their associated renewal sequences -- AIII. Renewal characterization of the convergence parameter -- AIV. Some consequences of ergodicity -- AV. Geometric ergodicity -- Background comments -- References UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3114088 ER -