Operator Valued Hardy Spaces.
- 1st ed.
- 1 online resource (78 pages)
- Memoirs of the American Mathematical Society ; v.188 .
- Memoirs of the American Mathematical Society .
Intro -- Contents -- Introduction -- Chapter 1. Preliminaries -- 1. The noncommutative spaces L[sup(p)](M,L[sup(2)][sub(c)](Ω)) -- 2. Operator valued Hardy spaces -- 3. Operator valued BMO spaces -- Chapter 2. The Duality between H[sup(1)] and BMO -- 1. The bounded map from L[sup(∞)](L[sup(∞)](R) ⊗ M,L[sup(2)][sub(C)]) to BMO[sub(c)](R,M) -- 2. The duality theorem of operator valued H[sup(1)] and BMO -- 3. The atomic decomposition of operator valued H[sup(1)] -- Chapter 3. The Maximal Inequality -- 1. The noncommutative Hardy-Littlewood maximal inequality -- 2. The noncommutative Lebesgue differentiation theorem and non-tangential limit of Poisson integrals -- Chapter 4. The Duality between H[sup(p)] and BMO[sup(q)],1 < -- p < -- 2 -- 1. Operator valued BMO[sup(q)](q > -- 2) -- 2. The duality theorem of H[sup(p)] and BM0[sup(q)](1 < -- p < -- 2) -- 3. The equivalence of H[sup(q)] and BMO[sup(q)](q > -- 2) -- Chapter 5. Reduction of BMO to dyadic BMO -- 1. BMO is the intersection of two dyadic BMO -- 2. The equivalence of H[sup(p)][sub(cr)] (R,M) and L[sup(p)](L[sup(∞)](R) ⊗ M)(1< -- p< -- ∞) -- Chapter 6. Interpolation -- 1. Complex interpolation -- 2. Real interpolation -- 3. Fourier multipliers -- Bibliography.