Minimal Surfaces in Riemannian Manifolds.
- 1st ed.
- 1 online resource (63 pages)
- Memoirs of the American Mathematical Society ; v.104 .
- Memoirs of the American Mathematical Society .
Intro -- Contents -- Introduction -- 0. Preliminaries -- 0.1. Spaces of maps -- 0.2. Pseudo-gradient vector field, pseudo-gradient flow and deformation lemma -- 1. Compactness and regularity -- 1.1. Some inequalities -- 1.2. Compactness and regularity -- 2. A priori estimates -- 2.1. Statement of the estimate -- 2.2. Variation with respect to the conform al group -- 2.3. "Blow up" analysis -- 2.3a. "Blow up" analysis in the interior -- 2.3b. A uniqueness theorem -- 2.3c. "Blow up" analysis near the boundary -- 2.4. Establishing the main estimate -- 3. Conformality and deformation lemmas for E -- 3.1. Conformality -- 3.2. Perturbation method -- 4. Mountain-Pass-Solution -- 5. A minimax principle -- 5.1. A new index and its properties -- 5.2. Continuity and stronger continuity -- 5.3. Multiple solution theorem for minimal surfaces -- 5.4. An application to S[sup(n)] -- References.