Ballot, Christian.

Density of Prime Divisors of Linear Recurrences. - 1st ed. - 1 online resource (117 pages) - Memoirs of the American Mathematical Society ; v.115 . - Memoirs of the American Mathematical Society .

Intro -- CONTENTS -- ABSTRACT -- INTRODUCTION -- CHAPTER 1 GENERAL PRELIMINARIES -- CHAPTER 2 BACKGROUND MATERIAL -- 1. Lucas Sequences. Rank. Laws of Apparition and Repetition -- 2. Some Results of Laxton. The Laxton Group -- 3. Hasse's Method and Lagarias' Contribution -- 4. Some Observations and Open Questions -- CHAPTER 3 MORE ABOUT RECURRING SEQUENCES OF ORDER TWO -- 1. Densities of Companion Sequences in the Reducible Case -- 2. Density of Divisors of Cq(θ1,θ2) -- CHAPTER 4 A STUDY OF THE CUBIC CASE -- 1. Preliminaries -- 2. Semi-group Structure on F(f) -- 3. Group Structure on G(f) -- 4. Maximal Division -- 5. Some Numerical Data -- 6. Sequences of Order Two -- 7. Prime Divisors of C2(θ1,θ2,θ3) -- 8. Twin Division -- CHAPTER 5 STUDY OF THE GENERAL CASE m ≥ 2 -- 1. Preliminaries -- 2. Semi-group Structure on F(f) -- 3. Group Structure on G(f) -- 4. Maximal Division -- 5. A Subgroup of Sequences of Order Two -- 6. Primes of Rank of Maximal Division a Multiple of a Prime q -- APPENDIX A - LIST OF THEOREMS -- APPENDIX B - LIST OF SYMBOLS -- REFERENCES.

9781470401306


Numbers, Prime.
Divisor theory.
Recurrent sequences (Mathematics).


Electronic books.

QA242 -- .B355 1995eb

512/.72