TY - BOOK AU - Trèves,François TI - Homotopy Formulas in the Tangential Cauchy-Riemann Complex T2 - Memoirs of the American Mathematical Society SN - 9781470408572 AV - QA374 -- .T748 1990eb U1 - 515/.353 PY - 1990/// CY - Providence PB - American Mathematical Society KW - Cauchy-Riemann equations KW - Homotopy theory KW - Differential forms KW - Electronic books N1 - Intro -- CONTENTS -- INTRODUCTION -- CHAPTER I: HOMOTOPY FORMULAS WITH EXPONENTIAL IN THE CAUCHY-RIEMANN COMPLEX -- I.1 The Cauchy-Riemann complex in C[sup(n)]. Notation -- I.2 Bochner-Martinelli formula with exponential -- I.3 Koppelman formulas with exponential -- I.4 Vanishing of the error terms -- CHAPTER II: HOMOTOPY FORMULAS IN THE TANGENTIAL CAUCHY-RIEMANN COMPLEX -- II.1 Local description of the tangential Cauchy-Riemann complex -- II.2 Application of the Bochner-Martinelli formula to a CR manifold -- II.3 Homotopy formulas for differential forms that vanish on the s-part of the boundary -- II.4 The pinching transformation -- II.5 Reduction to differential forms that vanish on the s-part of the boundary -- II.6 Convergence of the homotopy operators -- II.7 Exact homotopy formulas -- CHAPTER III: GEOMETRIC CONDITIONS -- III.1 In variance of the central hypothesis in the hypersurface case -- III.2 The hypersurface case: Supporting manifolds -- III.3 Local homotopy formulas on a hypersurface -- III.4 Local homotopy formulas in higher codimension -- REFERENCES UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113858 ER -