TY - BOOK AU - Bourdon,Paul S. AU - Shapiro,Joel H. TI - Cyclic Phenomena for Composition Operators T2 - Memoirs of the American Mathematical Society SN - 9781470401818 AV - QA329.2 -- .B687 1997eb U1 - 515/.7246 PY - 1997/// CY - Providence PB - American Mathematical Society KW - Composition operators KW - Electronic books N1 - Intro -- Contents -- Introduction -- Cyclicity -- Cyclicity and Iteration -- Linear-Fractional" Classification of Arbitrary Maps -- Transference -- The Intertwining Map σ -- 1 Preliminaries -- The Space H[sup(2)] -- Angular Derivatives -- Cyclicity and Univalence -- Hypercyclicity Basics -- 2 Linear-Fractional Composition Operators -- Linear-Fractional Basics -- Cyclicity: First Observations -- The Main Theorem -- Remarks on "Extreme Behavior -- 3 Linear-Fractional Models -- First Applications of Transference -- Cyclicity and Fixed-Point Position -- 4 The Hyperbolic and Parabolic Models -- Expansions About the Denjoy-Wolff Point -- Consequences for Parabolic Type -- The Hyperbolic Case -- The Parabolic Case -- Consequences of The Parabolic Models Theorem -- Motivation for the Proof -- Estimates on Orbit Magnitudes -- Proof of the Parabolic Models Theorem -- 5 Cyclicity: Parabolic Nonautomorphism Case -- Applying the Parabolic Model -- A Cyclic Vector for C[sub(α)] -- 6 Endnotes -- Orbit Separation and Parabolic Subtype -- Less Differentiability -- Further Directions -- Acknowledgment -- References UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113740 ER -