TY - BOOK AU - Schempp,Walter TI - Complex Contour Integral Representation of Cardinal Spline Functions: Contemporary Math T2 - Contemporary Mathematics SN - 9780821875933 AV - QA224 -- .S27 1982eb U1 - 511/.42 PY - 1982/// CY - Providence PB - American Mathematical Society KW - Spline theory KW - Integral transforms KW - Integral representations KW - Electronic books N1 - Intro -- Contents -- Foreword -- Preface -- Acknowledgements -- 1. Cardinal Spline Functions -- 2. A Complex Contour Integral Representation of Basis Spline Functions (Compact Paths) -- 3. The Case of Equidistant Knots -- 4. Cardinal Exponential Spline Functions and Interpolants -- 5. Inversion of Laplace Transform -- 6. A Complex Contour Integral Representation of Cardinal Exponential Spline Functions (Non-Compact Paths) -- 7. A Complex Contour Integral Representation of Euler-Frobenius Polynomials (Non-Compact Paths) -- 8. Cardinal Exponential Spline Interpolants of Higher Order -- 9. Convergence Behaviour of Cardinal Exponential Spline Interpolants -- 10. Divergence Behaviour of Polynomial Interpolants on Compact Intervals (The Méray-Runge Phenomenon) -- 11. Cardinal Logarithmic Spline Interpolants -- 12. Inversion of Mellin Transform -- 13. A Complex Contour Integral Representation of Cardinal Logarithmic Spline Interpolants (Non-Compact Paths) -- 14. Divergence Behaviour of Cardinal Logarithmic Spline Interpolants (The Newman-Schoenberg Phenomenon) -- 15. Summary and Concluding Remarks -- References -- Subject Index -- Author Index UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113065 ER -