TY - BOOK AU - Bonin,Joseph E. AU - Oxley,James G. AU - Servatius,Brigitte TI - Matroid Theory: AMS-IMS-SIAM Joint Summer Research Conference on Matroid Theory, July 2-6, 1995, University of Washington, Seattle T2 - Contemporary Mathematics SN - 9780821877883 AV - QA166.6 -- .A45 1995eb U1 - 511/.6 PY - 1996/// CY - Providence PB - American Mathematical Society KW - Matroids -- Congresses KW - Electronic books N1 - Intro -- Contents -- Preface -- Conference program -- List of participants -- Critical problems -- Structure theory and connectivity for matroids -- Some matroids from discrete applied geometry -- 1. Introduction -- 1.1 The broad themes -- -- 1.2 A pattern of matroids on graphs -- -- 1.3 Acknowledgments. -- Part 1: The Core Plane Matroids -- 2. The Plane Rigidity Matroid: Statics -- 3. The Plane Rigidity Matroid: Kinematics -- 4. Parallel Drawings in the Plane -- 5. The C01-Cofactor Matroid -- 6. Other 'Plane' Matroids -- 7. Summary of Plane Results -- Part II: Higher Dimensions -- 8. Parallel Scenes in Higher Dimensions -- 9. Rigidity of Frameworks in 3-space -- 10. The C12-Cofactor Matroid from Bivariate Splines -- 11. Higher Dimensions -- 12. d-Space Structures Which Work! -- Part III: Matroids for Geometric Homologies -- 13. Some Background -- 14. Simplicial Homology Matroids -- 15. Multivariate Cofactor Matroids -- 16. Skeletal Rigidity -- 17. Summary of Themes -- Appendix A. Matroids from Counts on Graphs and Hypergraphs -- A.1 The basic counts -- -- A.2 Some structure results from counts -- -- A.3 Hypermatroids from counts -- -- A.4 Counts on partitioned sets -- -- A.5 Variable counts on edge sets. -- References -- Oriented matroid pairs, theory and an electric application -- A min-max theorem using matroid separations -- A greedoid characteristic polynomial -- Monotactic matroids -- On binary matroids with a K3,3-minor -- Randomised approximation of the number of bases -- On representable matroids having neither U2,5-nor U3,5-minors -- Skeletal rigidity of p.1.-spheres -- The Coxeter matroids of Gelfand et al. -- Open problems UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3113047 ER -